已知方程x2+y2+kx+2y+k2=0所表示的圓有最大的面積,則直線y=(k-1)x+2的傾斜角α=    .

 

【解析】r=1,當(dāng)有最大半徑時有最大面積,此時k=0,r=1,∴直線方程為y=-x+2,設(shè)傾斜角為α,則由tanα=-1且α∈[0,π)得α=.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十第八章第一節(jié)練習(xí)卷(解析版) 題型:填空題

若過點(diǎn)P(-,1)Q(0,a)的直線的傾斜角的取值范圍為≤α≤,則實(shí)數(shù)a的取值范圍是    .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十八第八章第九節(jié)練習(xí)卷(解析版) 題型:解答題

已知橢圓C:+=1(a>b>0)的一個頂點(diǎn)A(2,0),離心率為,直線y=k(x-1)與橢圓C交于不同的兩點(diǎn)M,N.

(1)求橢圓C的方程.

(2)當(dāng)△AMN的面積為,k的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十五第八章第六節(jié)練習(xí)卷(解析版) 題型:選擇題

已知點(diǎn)F1,F2分別是雙曲線-=1的左、右焦點(diǎn),F1且垂直于x軸的直線與雙曲線交于A,B兩點(diǎn),若△ABF2為銳角三角形,則該雙曲線的離心率e的取值范圍是(  )

(A)(1,1+) (B)(1,)

(C)(+1,+) (D)(-,1+)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十五第八章第六節(jié)練習(xí)卷(解析版) 題型:選擇題

若雙曲線-=1的左焦點(diǎn)與拋物線y2=-8x的焦點(diǎn)重合,m的值為(  )

(A)3 (B)4 (C)5 (D)6

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十二第八章第三節(jié)練習(xí)卷(解析版) 題型:選擇題

點(diǎn)P(4,-2)與圓x2+y2=4上任一點(diǎn)連線的中點(diǎn)的軌跡方程是(  )

(A)(x-2)2+(y+1)2=1 (B)(x-2)2+(y+1)2=4

(C)(x+4)2+(y-2)2=4 (D)(x+2)2+(y-1)2=1

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十九第八章第十節(jié)練習(xí)卷(解析版) 題型:解答題

直線l與橢圓+=1(a>b>0)交于A(x1,y1),B(x2,y2)兩點(diǎn),已知m=(ax1,by1),n=(ax2,by2),mn且橢圓的離心離e=,又橢圓經(jīng)過點(diǎn)(,1),O為坐標(biāo)原點(diǎn).

(1)求橢圓的方程.

(2)試問:AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十三第八章第四節(jié)練習(xí)卷(解析版) 題型:填空題

若☉O:x2+y2=5與☉O1:(x-m)2+y2=20(mR)相交于A,B兩點(diǎn),且兩圓在點(diǎn)A處的切線互相垂直,則線段AB的長是   .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)全程總復(fù)習(xí)課時提升作業(yè)五十一第八章第二節(jié)練習(xí)卷(解析版) 題型:選擇題

已知P(2,-1),P點(diǎn)且與原點(diǎn)距離最大的直線的方程是(  )

(A)x-2y-5=0 (B)2x-y-5=0

(C)x+2y-5=0 (D)2x+y+5=0

 

查看答案和解析>>

同步練習(xí)冊答案