【題目】設(shè)函數(shù) ,集合M={x|f(x)=0}={x1 , x2 , x3 , x4 , x5}N* , 設(shè)c1≥c2≥c3 , 則c1﹣c3=( )
A.6
B.8
C.2
D.4
【答案】D
【解析】解:方程(x2﹣6x+c1)(x2﹣6x+c2)(x2﹣6x+c3)=0
x2﹣6x+c1=0
x2﹣6x+c2=0
x2﹣6x+c3=0
∵正整數(shù)解集為{x1 , x2 , x3 , x4 , x5},
∴當(dāng)c=5時(shí),x=1.x=5,
當(dāng)c=8時(shí),x=2,x=4
當(dāng)c=9時(shí),x=3,
符合正整數(shù)解集,
又c1≥c2≥c3 ,
故c1=9,c3=5
故c1﹣c3=4
故選D
【考點(diǎn)精析】認(rèn)真審題,首先需要了解函數(shù)的零點(diǎn)與方程根的關(guān)系(二次函數(shù)的零點(diǎn):(1)△>0,方程 有兩不等實(shí)根,二次函數(shù)的圖象與 軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn);(2)△=0,方程 有兩相等實(shí)根(二重根),二次函數(shù)的圖象與 軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn);(3)△<0,方程 無實(shí)根,二次函數(shù)的圖象與 軸無交點(diǎn),二次函數(shù)無零點(diǎn)).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司研究開發(fā)了一種新產(chǎn)品,生產(chǎn)這種新產(chǎn)品的年固定成本為150萬元,每生產(chǎn)千件,需另投入成本為 (萬元), .每件產(chǎn)品售價(jià)為500元.該新產(chǎn)品在市場(chǎng)上供不應(yīng)求可全部賣完.
(Ⅰ)寫出年利潤(rùn)(萬元)關(guān)于年產(chǎn)量(千件)的函數(shù)解析式;
(Ⅱ)當(dāng)年產(chǎn)量為多少千件時(shí),該公司在這一新產(chǎn)品的生產(chǎn)中所獲利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某問答游戲的規(guī)則是:共5道選擇題,基礎(chǔ)分為50分,每答錯(cuò)一道題扣10分,答對(duì)不扣分.試分別用列表法、圖象法、解析法表示一個(gè)參與者的得分y與答錯(cuò)題目道數(shù)x(x∈{0,1,2,3,4,5})之間的函數(shù)關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分16分)第1小題5分,第2小題5分,第3小題6分.
已知函數(shù),其中為常數(shù),且 .
(1) 若是奇函數(shù),求的取值集合;
(2) 當(dāng) 時(shí),設(shè)的反函數(shù)為,且函數(shù)的圖像與的圖像關(guān)于對(duì)稱,求的取值集合;
(3) 對(duì)于問題(1)(2)中的 ,當(dāng)時(shí),不等式恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量, ,設(shè)函數(shù),且的圖象過點(diǎn)和點(diǎn).
(Ⅰ)求的值;
(Ⅱ)將的圖象向左平移()個(gè)單位后得到函數(shù)的圖象.若的圖象上各最高點(diǎn)到點(diǎn)的距離的最小值為1,求的單調(diào)增區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線: 的焦點(diǎn)與雙曲線: 的右焦點(diǎn)的連線交于第一象限的點(diǎn),若在點(diǎn)處的切線平行于的一條漸近線,則( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2+ax+b(a,b∈R),
(1)若函數(shù)f(x)在區(qū)間[﹣1,1]上不單調(diào),求實(shí)數(shù)a的取值范圍;
(2)記M(a,b)是|f(x)|在區(qū)間[﹣1,1]上的最大值,證明:當(dāng)|a|≥2時(shí),M(a,b)≥2.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某商場(chǎng)計(jì)劃銷售某種產(chǎn)品,現(xiàn)邀請(qǐng)生產(chǎn)該產(chǎn)品的甲、乙兩個(gè)廠家進(jìn)場(chǎng)試銷10天,兩個(gè)廠家提供的返利方案如下:甲廠家每天固定返利70元,且每賣出一件產(chǎn)品廠家再返利2元;乙廠家無固定返利,賣出40件以內(nèi)(含40件)的產(chǎn)品,每件產(chǎn)品廠家返利4元,超出40件的部分每件返利6元.經(jīng)統(tǒng)計(jì),兩個(gè)廠家10天的試銷情況莖葉圖如下:
(Ⅰ)現(xiàn)從廠家試銷的10天中抽取兩天,求這兩天的銷售量都大于40的概率;
(Ⅱ)若將頻率視作概率,回答以下問題:
(ⅰ)記乙廠家的日返利額為(單位:元),求的分布列和數(shù)學(xué)期望;
(ⅱ)商場(chǎng)擬在甲、乙兩個(gè)廠家中選擇一家長(zhǎng)期銷售,如果僅從日返利額的角度考慮,請(qǐng)利用所學(xué)的統(tǒng)計(jì)學(xué)知識(shí)為商場(chǎng)做出選擇,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com