【題目】如圖,在平面直角坐標(biāo)系中,已知橢圓的右焦點為,下頂點為P,過點的動直線l交橢圓CA,B兩點.

1)當(dāng)直線l平行于x軸時,P,F,A三點共線,且,求橢圓C的方程;

2)當(dāng)橢圓C的離心率為何值時,對任意的動直線l,總有

【答案】12)橢圓C的離心率為

【解析】

1)當(dāng)直線x軸平行,由,得到點坐標(biāo),根據(jù),得到的值,將點代入橢圓方程,得到,從而得到所求橢圓方程;

2)①當(dāng)直線l平行于x軸時,由,得到,從而得到,根據(jù)得到,從而得到離心率,②當(dāng)直線l不平行于x軸時,當(dāng),橢圓方程轉(zhuǎn)化為,將直線l與橢圓聯(lián)立,得到,再對進(jìn)行化簡,可得,從而得到所求橢圓離心率為.

解:(1)當(dāng)直線x軸平行時,即,

如圖,作軸于點D

則根據(jù),可得,

,

解得,

又因為在橢圓上,所以,

解得

所以,

所以橢圓C的方程為;

2)①當(dāng)直線l平行于x軸時,

,得

,又,

,∴,

,.

②當(dāng)直線l不平行于x軸時,下面證明當(dāng),總有,

事實上,由①知橢圓可化為,

直線l的方程為,,,

,得,

,

,

.

,

綜上,當(dāng)橢圓C的離心率為時,對任意的動直線l,總有.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】是拋物線內(nèi)一點,是拋物線的焦點,是拋物線上任意一點,且已知的最小值為2.

1)求拋物線的方程;

2)拋物線上一點處的切線與斜率為常數(shù)的動直線相交于,且直線與拋物線相交于兩點.問是否有常數(shù)使?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】隨著網(wǎng)購人數(shù)的日益增多,網(wǎng)上的支付方式也呈現(xiàn)一種多樣化的狀態(tài),越來越多的便捷移動支付方式受到了人們的青睞,更被網(wǎng)友們評為“新四大發(fā)明”之一.隨著人們消費觀念的進(jìn)步,許多人喜歡用信用卡購物,考慮到這一點,一種“網(wǎng)上的信用卡”橫空出世——螞蟻花唄.這是一款支付寶和螞蟻金融合作開發(fā)的新支付方式,簡單便捷,同時也滿足了部分網(wǎng)上消費群體在支付寶余額不足時的“賒購”消費需求.為了調(diào)查使用螞蟻花唄“賒購”消費與消費者年齡段的關(guān)系,某網(wǎng)站對其注冊用戶開展抽樣調(diào)查,在每個年齡段的注冊用戶中各隨機(jī)抽取100人,得到各年齡段使用螞蟻花唄“賒購”的人數(shù)百分比如圖所示.

1)由大數(shù)據(jù)可知,在1844歲之間使用花唄“賒購”的人數(shù)百分比y與年齡x成線性相關(guān)關(guān)系,利用統(tǒng)計圖表中的數(shù)據(jù),以各年齡段的區(qū)間中點代表該年齡段的年齡,求所調(diào)查群體各年齡段“賒購”人數(shù)百分比y與年齡x的線性回歸方程(回歸直線方程的斜率和截距保留兩位有效數(shù)字);

2)該網(wǎng)站年齡為20歲的注冊用戶共有2000人,試估算該網(wǎng)站20歲的注冊用戶中使用花唄“賒購”的人數(shù);

3)已知該網(wǎng)店中年齡段在18-26歲和27-35歲的注冊用戶人數(shù)相同,現(xiàn)從1835歲之間使用花唄“賒購”的人群中按分層抽樣的方法隨機(jī)抽取8人,再從這8人中簡單隨機(jī)抽取2人調(diào)查他們每個月使用花唄消費的額度,求抽取的兩人年齡都在1826歲的概率.

參考答案:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直角梯形中,,E、F分別是上的點,且,,沿將四邊形折起,如圖2,使所成的角為60°.

1)求證:平面;

2M上的點,,若二面角的余弦值為,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為t為參數(shù)),以坐標(biāo)原點O為極點,以x軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)寫出直線的普通方程和曲線C的直角坐標(biāo)方程;

2)已知定點,直線與曲線C分別交于PQ兩點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的三棱錐中,是邊長為2的等邊三角形,,的中位線,為線段的中點.

1)證明:.

2)若二面角為直二面角,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xoy中,已知曲線C1x2+y2=1,以平面直角坐標(biāo)系xoy的原點O為極點,x軸的正半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線ρ(2cosθ-sinθ)=6.

)將曲線C1上的所有點的橫坐標(biāo),縱坐標(biāo)分別伸長為原來的2倍后得到曲線C2,試寫出直線的直角坐標(biāo)方程和曲線C2的參數(shù)方程.

)在曲線C2上求一點P,使點P到直線l的距離最大,并求出此最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=|x-m|-|2x+2m|m0).

(Ⅰ)當(dāng)m=1時,求不等式fx)≥1的解集;

(Ⅱ)若xR,tR,使得fx+|t-1||t+1|,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知.

1)當(dāng)時,求的切線方程;

2)若對任意時,恒成立,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案