【題目】設Sn為數(shù)列{an}的前n項和,Sn=2n2﹣30n.
(1)求a1及an;
(2)判斷這個數(shù)列是否是等差數(shù)列.

【答案】
(1)解:由Sn=2n2﹣30n,得 ,

當n≥2時,an=Sn﹣Sn1=2n2﹣30n﹣[2(n﹣1)2﹣30(n﹣1)]=4n﹣32.

驗證n=1上式成立,

∴an=4n﹣32


(2)解:由an=4n﹣32,得an1=4(n﹣1)﹣32(n≥2),

∴an﹣an1=4n﹣32﹣[4(n﹣1)﹣32]=4(常數(shù)),

∴數(shù)列{an}是等差數(shù)列


【解析】(1)在數(shù)列的前n項和中,取n=1求得a1 , 再由an=Sn﹣Sn1(n≥2)求得an;(2)由(1)中求得的通項公式,利用定義判斷數(shù)列是等差數(shù)列.
【考點精析】本題主要考查了等差關系的確定的相關知識點,需要掌握如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),即=d ,(n≥2,n∈N)那么這個數(shù)列就叫做等差數(shù)列才能正確解答此題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】我國是世界上嚴重缺水的國家之一,城市缺水問題較為突出.某市為了節(jié)約生活用水,計劃在本市試行居民生活用水定額管理(即確定一個居民月均用水量標準用水量不超過a的部分按照平價收費,超過a的部分按照議價收費).為了較為合理地確定出這個標準,通過抽樣獲得了 100位居民某年的月均用水量(單位:t),制作了頻率分布直方圖.

(1)由于某種原因頻率分布直方圖部分數(shù)據(jù)丟失,請在圖中將其補充完整;
(2)用樣本估計總體,如果希望80%的居民每月的用水量不超出標準則月均用水量的最低標準定為多少噸,請說明理由;
(3)從頻率分布直方圖中估計該100位居民月均用水量的眾數(shù),中位數(shù),平均數(shù)(同一組中的數(shù)據(jù)用該區(qū)間的中點值代表).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,直三棱柱中, , , 為棱的中點.

(Ⅰ)探究直線與平面的位置關系,并說明理由;

(Ⅱ)若,求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列{an}滿足a2=0,a6+a8=﹣10.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{ }的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】省環(huán)保研究所對某市市中心每天環(huán)境放射性污染情況進行調(diào)查研究后,發(fā)現(xiàn)一天中環(huán)境綜合放射性污染指數(shù)與時刻 (時)的關系為,其中是與氣象有關的參數(shù),且,若用每天的最大值為當天的綜合放射性污染指數(shù),并記作.

(1)令.求的取值范圍;

(2)求;

(3)省政府規(guī)定,每天的綜合放射性污染指數(shù)不得超過2,試問目前該市市中心的綜合放射性污染指數(shù)是否超標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】用0、1、2、3、4這五個數(shù)字,可以組成多少個滿足下列條件的沒有重復數(shù)字的五位數(shù)?
(1)奇數(shù);
(2)比21034大的偶數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】市環(huán)保局舉辦2013年“六五”世界環(huán)境日宣傳活動,進行現(xiàn)場抽獎.抽獎規(guī)則是:盒中裝有10張大小相同的精美卡片,卡片上分別印有“環(huán)保會徽”或“綠色環(huán)保標志”圖案.參加者每次從盒中抽取卡片兩張,若抽到兩張都是“綠色環(huán)保標志”卡即可獲獎.
(1)活動開始后,一位參加者問:盒中有幾張“綠色環(huán)保標志”卡?主持人笑說:我只知道若從盒中抽兩張都不是“綠色環(huán)保標志”卡的概率是 .求抽獎者獲獎的概率;
(2)現(xiàn)有甲乙丙丁四人依次抽獎,抽后放回,另一人再抽.用ξ表示獲獎的人數(shù).求ξ的分布列及E(ξ),D(ξ).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】解答題
(1)(1)已知命題p:|x2﹣x|≥6,q:x∈Z且“p且q”與“非q”同時為假命題,求x的值.
(2)已知p:x2﹣8x﹣20≤0,q:x2﹣2x+1﹣m2≤0(m>0),若¬p是¬q的必要而不充分條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在邊長為4的菱形中, ,點分別是的中點, ,沿翻折到,連接,得到如圖的五棱錐,且

(1)求證: 平面(2)求二面角的余弦值.

查看答案和解析>>

同步練習冊答案