【題目】已知函數(shù)f(x)= g(x)= ,則函數(shù)f[g(x)]的所有零點之和是( )
A.
B.
C.
D.
【答案】B
【解析】解:∵f(x)= g(x)= ,
∴f[g(x)]= ,且f[g(x)]=x2﹣2x+2,( 0<x<2)
分情況討論:①x≥2或x=0時,由 ,可解得:x=1 或1﹣ (小于0,舍去);
②x<0時,由 =0,可解得:x=﹣ .
③當 0<x<2時,由x2﹣2x+2=0,無解.
∴函數(shù)f[g(x)]的所有零點之和是1 = .
故選:B.
【考點精析】本題主要考查了函數(shù)的零點的相關知識點,需要掌握函數(shù)的零點就是方程的實數(shù)根,亦即函數(shù)的圖象與軸交點的橫坐標.即:方程有實數(shù)根,函數(shù)的圖象與坐標軸有交點,函數(shù)有零點才能正確解答此題.
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,以原點為極點, 軸的正半軸為極軸,建立極坐標系,兩坐標系中取相同的單位長度,已知曲線的方程為,點.
(1)求曲線的直角坐標方程和點的直角坐標;
(2)設為曲線上一動點,以為對角線的矩形的一邊平行于極軸,求矩形周長的最小值及此時點的直角坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+alnx. (Ⅰ)當a=﹣2時,求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)若g(x)=f(x)+ 在[1,+∞)上是單調(diào)增函數(shù),求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
某工廠有100名工人接受了生產(chǎn)1000臺某產(chǎn)品的總任務,每臺產(chǎn)品由9個甲型裝置和3個乙型裝置配套組成,每個工人每小時能加工完成1個甲型裝置或3個乙型裝置.現(xiàn)將工人分成兩組分別加工甲型和乙型裝置.設加工甲型裝置的工人有x人,他們加工完甲型裝置所需時間為t1小時,其余工人加工完乙型裝置所需時間為t2小時.
設f(x)=t1+t2.
(Ⅰ)求f(x)的解析式,并寫出其定義域;
(Ⅱ)當x等于多少時,f(x)取得最小值?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】
已知函數(shù)f(x)=2x3-3(a+1)x2+6ax,a∈R.
(Ⅰ)曲線y=f(x)在x=0處的切線的斜率為3,求a的值;
(Ⅱ)若對于任意x∈(0,+∞),f(x)+f(-x)≥12lnx恒成立,求a的取值范圍;
(Ⅲ)若a>1,設函數(shù)f(x)在區(qū)間[1,2]上的最大值、最小值分別為M(a)、m(a),
記h(a)=M(a)-m(a),求h(a)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù) ,其中a∈R,若對任意的非零的實數(shù)x1 , 存在唯一的非零的實數(shù)x2(x2≠x1),使得f(x2)=f(x1)成立,則k的最小值為( )
A.
B.5
C.6
D.8
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知 = .
(1)求角A的大;
(2)當a=6時,求△ABC面積的最大值,并指出面積最大時△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】中秋節(jié)即將到來,為了做好中秋節(jié)商場促銷活動,某商場打算將進行促銷活動的禮品盒重新設計.方案如下:將一塊邊長為10的正方形紙片剪去四個全等的等腰三角形, , , 再將剩下的陰影部分折成一個四棱錐形狀的包裝盒,其中重合于點, 與重合, 與重合, 與重合, 與重合(如圖所示).
(1)求證:平面平面;
(2)已知,過作交于點,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】100名學生報名參加A、B兩個課外活動小組,報名參加A組的人數(shù)是全體學生人數(shù)的 ,報名參加B組的人數(shù)比報名參加A組的人數(shù)多3,兩組都沒報名的人數(shù)是同時報名參加A、B兩組人數(shù)的 多1,求同時報名參加A、B兩組人數(shù)( )
A.36
B.13
C.24
D.27
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com