已知函數(shù)f(x)=x2-2,g(x)=xlnx,,
(1)若對一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,求實(shí)數(shù)a的取值范圍;
(2)試判斷方程ln(1+x2)-
1
2
f(x)-k=0
有幾個實(shí)根.
(1)若對一切x∈(0,+∞),2g(x)≥ax-5-f(x)恒成立,
即2xlnx+x2-ax+3≥0在x∈(0,+∞)恒成立,∴a≤2lnx+x+
3
x
在x∈(0,+∞)恒成立,
F(x)=2lnx+x+
3
x
,則F′(x)=
2
x
+1-
3
x2
=
(x+3)(x-1)
x2
,F(xiàn)'(x)=0時x=1,F(xiàn)(x)在(0,1)遞減,在(1,+∞)遞增,∴Fmin=F(1)=4,∴只需a≤4.
(2)將原方程化為ln(1+x2)-
1
2
x2+1=k
,
G(x)=ln(1+x2)-
1
2
x2+1
,為偶函數(shù),且G(0)=1,x>0時G′(x)=
-x(x+1)(x-1)
x2+1
,

∴G(x)max=
1
2
+ln2,且x→+∞,y→-∞∴k>
1
2
+ln2
時,無解;k=
1
2
+ln2
或k=1時,三解;1<k<
1
2
+ln2
,四解;k<1時,兩解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)f(x)是R上的奇函數(shù),f(x+2)=-f(x),當(dāng)0≤x≤1時,f(x)=x.
(Ⅰ)求f(π)的值;
(Ⅱ)作出當(dāng)-4≤x≤4時函數(shù)f(x)的圖象,并求它與x軸所圍成圖形的面積;
(Ⅲ)直接寫出函數(shù)f(x)在R上的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ln
x+1
x-1

(1)求函數(shù)f(x)的定義域,并判斷函數(shù)f(x)的奇偶性;
(2)對于x∈[2,6],f(x)=ln
x+1
x-1
>ln
m
(x-1)(7-x)
恒成立,求實(shí)數(shù)m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)函數(shù)f(x)=loga丨x+b丨在定義域內(nèi)具有奇偶性,f(b-2)與f(a+1)的大小關(guān)系是(  )
A.f(b-2)=f(a+1)B.f(b-2)>f(a+1)C.f(b-2)<f(a+1)D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(Ⅰ)已知f(x)=
2
3x-1
+k
是奇函數(shù),求常數(shù)k的值.;
(Ⅱ)已知函數(shù)f(x)=x|x-m|(x∈R)且f(4)=0.
①求實(shí)數(shù)m的取值.
②如圖,作出函數(shù)f(x)的圖象并寫出函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)是(-∞,+∞)上的奇函數(shù),x∈[0,2)時,f(x)=x2,若對于任意x∈R,都有f(x+4)=f(x),則f(2)-f(3)的值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知y=f(x)是偶函數(shù),y=g(x)是奇函數(shù),它們的定義域都是[-3,3],且它們在x∈[0,3]上的圖象如圖所示,則不等式f(x)•g(x)<0的解集為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知定義在(-1,1)上的偶函數(shù)f(x)在(0,1)上單調(diào)遞增,則滿足f(2x-1)<f(x)的x的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

奇函數(shù)定義域是,則        .

查看答案和解析>>

同步練習(xí)冊答案