【題目】已知函數, .
(1)求函數的極值;
(2)若不等式對恒成立,求的取值范圍.
【答案】(1)答案見解析;(2) .
【解析】試題分析:(1)對函數求導得到 ,討論和0和1 的大小關系,在不同情況下求得導函數的正負即得到原函數的單調性,根據極值的概念得到結果;(2)設 ,構造以上函數,研究函數的單調性,求得函數的最值,使得最小值大于等于0即可.
解析:
(Ⅰ),
,
∵的定義域為.
①即時, 在上遞減, 在上遞增,
, 無極大值.
②即時, 在和上遞增,在上遞減,
, .
③即時, 在上遞增, 沒有極值.
④即時, 在和上遞增, 在上遞減,
∴, .
綜上可知: 時, , 無極大值;
時, , ;
時, 沒有極值;
時, , .
(Ⅱ)設 ,
,
設,則, , ,
∴在上遞增,∴的值域為,
①當時, , 為上的增函數,
∴,適合條件.
②當時,∵,∴不適合條件.
③當時,對于, ,
令, ,
存在,使得時, ,
∴在上單調遞減,
∴,
即在時, ,∴不適合條件.
綜上, 的取值范圍為.
科目:高中數學 來源: 題型:
【題目】已知拋物線C:y2=2px(p>0)的焦點為F,過F且斜率為的直線l與拋物線C交于A,B兩點,B在x軸的上方,且點B的橫坐標為4.
(1)求拋物線C的標準方程;
(2)設點P為拋物線C上異于A,B的點,直線PA與PB分別交拋物線C的準線于E,G兩點,x軸與準線的交點為H,求證:HGHE為定值,并求出定值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在正四面體ABCD中,點E,F分別是AB,BC的中點,則下列命題正確的序號是______
①異面直線AB與CD所成角為90°;
②直線AB與平面BCD所成角為60°;
③直線EF∥平面ACD
④平面AFD⊥平面BCD.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某面包推出一款新面包,每個面包的成本價為4元,售價為10元,該款面包當天只出一爐(一爐至少15個,至多30個),當天如果沒有售完,剩余的面包以每個2元的價格處理掉,為了確定這一爐面包的個數,該店記錄了這款新面包最近30天的日需求量(單位:個),整理得下表:
(1)根據表中數據可知,頻數與日需求量(單位:個)線性相關,求關于的線性回歸方程;
(2)以30天記錄的各日需求量的頻率代替各日需求量的概率,若該店這款新面包出爐的個數為24,記當日這款新面包獲得的總利潤為(單位:元).
(。┤羧招枨罅繛15個,求;
(ⅱ)求的分布列及其數學期望.
相關公式: ,
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】設函數的圖象為C,則下列結論中正確的是( )
A.圖象C關于直線對稱
B.圖象C關于點對稱
C.函數在區(qū)間內是增函數
D.把函數的圖象上點的橫坐標縮短為原來的一半(縱坐標不變)可以得到圖象C
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖所示,在四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, , 分別為的中點.
(1)證明: 平面;
(2)證明:平面平面;
(3)求四棱錐的體積.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,邊長為2的等邊△PCD所在的平面垂直于矩形ABCD所在的平面,BC=,M為BC的中點.
(I)證明:AM⊥PM ;
(II)求二面角P-AM-D的大小.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com