精英家教網 > 高中數學 > 題目詳情

【題目】平面直角坐標系xOy中,A(2,4),B(﹣1,2),C,D為動點,
(1)若C(3,1),求平行四邊形ABCD的兩條對角線的長度
(2)若C(a,b),且 ,求 取得最小值時a,b的值.

【答案】
(1)解: =(1,﹣3), =(3,2).

= =

由平行四邊形的性質可得: = ,可得 = + =(6,3).

=(7,1),可得: = =5


(2)解:C(a,b),且 ,∴ = +(3,1)=(a+3,b+1).

=(a+4,b﹣1).

=(a﹣2,b﹣4).

=(a﹣2)(a+4)+(b﹣4)(b﹣1)=a2+2a﹣8+b2﹣5b+4

=(a+1)2+ ,當且僅當a=﹣1,b= 時取等號


【解析】(1) =(1,﹣3), =(3,2).可得 .由平行四邊形的性質可得: = ,可得 = + .可得 .(2)C(a,b),且 ,可得 = +(3,1),可得 =(a+4,b﹣1). =(a﹣2,b﹣4).利用數量積運算性質、二次函數的單調性即可得出.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|log0.5x|,若正實數m,n(m<n)滿足f(m)=f(n),且f(x)在區(qū)間[m2 , n]上的最大值為4,則n﹣m=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】一個盒子中裝有4張卡片,每張卡片上寫有1個數字,數字分別是1,2,3,4,現從盒子中隨機抽取卡片.
(1)若一次從中隨機抽取3張卡片,求3張卡片上數字之和大于或等于8的概率;
(2)若隨機抽取1張卡片,放回后再隨機抽取1張卡片,求兩次抽取的卡片中至少一次抽到數字3的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】“奶茶妹妹”對某時間段的奶茶銷售量及其價格進行調查,統(tǒng)計出售價x元和銷售量y杯之間的一組數據如下表所示:

價格x

5

5.5

6.5

7

銷售量y

12

10

6

4

通過分析,發(fā)現銷售量y對奶茶的價格x具有線性相關關系.
(Ⅰ)求銷售量y對奶茶的價格x的回歸直線方程;
(Ⅱ)欲使銷售量為13杯,則價格應定為多少?
注:在回歸直線y= 中, = =146.5.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在數列{an}中,a1=1,an+1=2an+1 (I)求證數列{an+1}是等比數列;
(II)設cn=n(an+1),求數列{cn}的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=x|x﹣a|+2x(a∈R)
(1)當a=4時,解不等式f(x)≥8;
(2)當a∈[0,4]時,求f(x)在區(qū)間[3,4]上的最小值;
(3)若存在a∈[0,4],使得關于x的方程f(x)=tf(a)有3個不相等的實數根,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為考察高中生的性別與是否喜歡數學課程之間的關系,在某城市的某校高中生中,從男生中隨機抽取了70人,從女生中隨機抽取了50人,男生中喜歡數學課程的占,女生中喜歡數學課程的占,得到如下列聯(lián)表.

喜歡數學課程

不喜歡數學課程

合計

男生

女生

合計

0.150

0.100

0.050

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

(1)請將列聯(lián)表補充完整;試判斷能否有90%的把握認為喜歡數學課程與否與性別有關;

(2)從不喜歡數學課程的學生中采用分層抽樣的方法,隨機抽取6人,現從6人中隨機抽取2人,若所選2名學生中的女生人數為,求的分布列及數學期望.

附:,其中.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知等比數列{an}滿足a1=2,a2=4(a3﹣a4),數列{bn}滿足bn=3﹣2log2an
(1)求數列{an},{bn}的通項公式;
(2)令cn= ,求數列{cn}的前n項和Sn
(3)若λ>0,求對所有的正整數n都有2λ2﹣kλ+2>a2nbn成立的k的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知a>0,a≠1,設p:函數y=loga(x+1)在(0,+∞)上單調遞減;q:曲線y=x2+(2a﹣3)x+1與x軸交于不同的兩點.如果p且q為假命題,p或q為真命題,求a的取值范圍.

查看答案和解析>>

同步練習冊答案