【題目】當(dāng)今,手機已經(jīng)成為人們不可或缺的交流工具,人們常常把喜歡玩手機的人冠上了名號“低頭族”,手機已經(jīng)嚴重影響了人們的生活,一媒體為調(diào)查市民對低頭族的認識,從某社區(qū)的500名市民中,隨機抽取名市民,按年齡情況進行統(tǒng)計的頻率分布表和頻率分布直方圖如圖

(1)求出表中的的值,并補全頻率分布直方圖;

(2)媒體記者為了做好調(diào)查工作,決定從所隨機抽取的市民中按年齡采用分層抽樣的方法抽取20名接受采訪,再從抽出的這20名中年齡在的選取2名擔(dān)任主要發(fā)言人.記這2名主要發(fā)言人年齡在的人數(shù)為,求的分布列及數(shù)學(xué)期望.

【答案】(1)見解析(2)

【解析】試題分析:(1)根據(jù)頻率等于頻數(shù)除以總數(shù),分別求出,再根據(jù)小長方形對應(yīng)縱坐標等于頻率除以組距補全頻率分布直方圖,(2)先根據(jù)分層抽樣確定年齡在人數(shù),再確定隨機變量取法:可能取值為0,1,2, 利用組合計算對應(yīng)概率,列出分布列,最后根據(jù)數(shù)學(xué)期望公式求期望.

試題解析:(1)由題意知頻率分布表可知: ,所以,

補全頻率分布直方圖,如圖所示.

(2)設(shè)抽出的20名受訪者年齡在分別由名,由分層抽樣可得,解得.所以年齡在共有13名.

的可能取值為0,1,2,

的分布列為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,設(shè)橢圓的中心為原點O,長軸在x軸上,上頂點為A,左、右焦點分別為F1、F2,線段OF1、OF2的中點分別為B1、B2,△AB1B2是面積為4的直角三角形.

(1)求該橢圓的離心率和標準方程;

(2)B1作直線交橢圓于PQ兩點,使PB2⊥QB2,△PB2Q的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】統(tǒng)計表明,某種型號的汽車在勻速行駛中每小時耗油量(升)關(guān)于行駛速度(千米/小時)的函數(shù)解析式可以表示為: ,已知甲、乙兩地相距100千米.

(1)當(dāng)汽車以40千米/小時的速度勻速行駛時,從甲地到乙地要耗油多少升?

(2)當(dāng)汽車以多大的速度勻速行駛時,從甲地到乙地耗油最少?最少為多少升?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】將函數(shù)y=sin2x的圖象向左平移 個單位,再向上平移1個單位,所得圖象的函數(shù)解析式是(
A.y=2cos2x
B.y=2sin2x
C.
D.y=cos2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列的前項和為, ,數(shù)列滿足在直線上.

(1)求數(shù)列, 的通項, ;

(2)令,求數(shù)列的前項和;

(3)若,求對所有的正整數(shù)都有成立的的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=2sinxcosx+2 cos2x﹣
(1)求函數(shù)f(x)的最小正周期和單調(diào)減區(qū)間;
(2)已知△ABC的三個內(nèi)角A,B,C的對邊分別為a,b,c,其中a=7,若銳角A滿足f( )= ,且sinB+sinC= ,求bc的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一袋中裝有6個黑球,4個白球.如果不放回地依次取出2個球.求:

(1)第1次取到黑球的概率;

(2)第1次和第2次都取到黑球的概率;

(3)在第1次取到黑球的條件下,第2次又取到黑球的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】等差數(shù)列{an}的前n項和為Sn,已知a1=10,a2為整數(shù),且SnS4.

(1)求{an}的通項公式;

(2)設(shè)bn,求數(shù)列{bn}的前n項和Tn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x(lnx﹣ax).
(1)a= 時,求f(x)在點(1,f(1))處的切線方程;
(2)若f(x)存在兩個不同的極值x1 , x2 , 求a的取值范圍;
(3)在(2)的條件下,求f(x)在(0,a]上的最小值.

查看答案和解析>>

同步練習(xí)冊答案