【題目】已知某三棱錐的三視圖如圖所示,正視圖和俯視圖都是等腰直角三角形,則該三棱錐中最長(zhǎng)的棱長(zhǎng)為( )
A.
B.
C.
D.2
【答案】A
【解析】解:由三視圖可知:該幾何體為三棱錐,P﹣ABC, 其中側(cè)面PAB⊥底面ABC,底面ABC為直角三角形,
AB⊥BC,BC=2,AB=1,在平面OAB內(nèi),
過(guò)點(diǎn)P作PO⊥AB,垂足為O,則PO⊥底面ABC,PO=2,AO=1.
則該三棱錐中最長(zhǎng)的棱長(zhǎng)為
PC= .
故選:A.
由三視圖可知:該幾何體為三棱錐,P﹣ABC,其中側(cè)面PAB⊥底面ABC,底面ABC為直角三角形,AB⊥BC,BC=2,AB=1,在平面OAB內(nèi),過(guò)點(diǎn)P作PO⊥AB,垂足為O,則PO⊥底面ABC,PO=2,AO=1.則該三棱錐中最長(zhǎng)的棱長(zhǎng)為PC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系xOy中,曲線 ,曲線C2的參數(shù)方程為: ,(θ為參數(shù)),以O(shè)為極點(diǎn),x軸的正半軸為極軸的極坐標(biāo)系.
(1)求C1 , C2的極坐標(biāo)方程;
(2)射線 與C1的異于原點(diǎn)的交點(diǎn)為A,與C2的交點(diǎn)為B,求|AB|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四棱錐P﹣ABCD中,底面為矩形,PA⊥底面ABCD,PA=BC=1,AB=2,M為PC中點(diǎn).
(Ⅰ)在圖中作出平面ADM與PB的交點(diǎn)N,并指出點(diǎn)N所在位置(不要求給出理由);
(Ⅱ)在線段CD上是否存在一點(diǎn)E,使得直線AE與平面ADM所成角的正弦值為 ,若存在,請(qǐng)說(shuō)明點(diǎn)E的位置;若不存在,請(qǐng)說(shuō)明理由;
(Ⅲ)求二面角A﹣MD﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,,點(diǎn)M在邊DC上,點(diǎn)F在邊AB上,且,垂足為E,若將沿AM折起,使點(diǎn)D位于位置,連接,得四棱錐.
Ⅰ求證:;
Ⅱ若,直線與平面ABCM所成角的大小為,求直線與平面ABCM所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|x﹣m|﹣1.
(1)若不等式f(x)≤2的解集為{x|﹣1≤x≤5},求實(shí)數(shù)m的值;
(2)在(1)的條件下,若f(x)+f(x+5)≥t﹣2對(duì)一切實(shí)數(shù)x恒成立,求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,平面平面,且.
(1)求證:平面;
(2)求和平面所成角的正弦值;
(3)在線段上是否存在一點(diǎn)使得平面平面,若存在,求出的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,菱形ABCD中,∠ABC=60°,AC與BD相交于點(diǎn)O,AE⊥平面ABCD,CF∥AE,AB=2,CF=3.
(1)求證:BD⊥平面ACFE;
(2)當(dāng)直線FO與平面BED所成角的大小為45°時(shí),求AE的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正方體ABCD﹣A1B1C1D1的棱長(zhǎng)為1,點(diǎn)P是線段A1C1上的動(dòng)點(diǎn),則四棱錐P﹣ABCD的外接球半徑R的取值范圍是
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(Ⅰ)若函數(shù)在上為增函數(shù),求正實(shí)數(shù)的取值范圍;
(Ⅱ)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com