用一平面去截球所得截面的面積為3πcm2,已知球心到該截面的距離為1cm,則該球的體積是
 
cm3
考點(diǎn):球的體積和表面積
專(zhuān)題:
分析:求出小圓的半徑,然后利用球心到該截面的距離為1 cm,小圓的半徑,通過(guò)勾股定理求出球的半徑,即可求出球的體積.
解答: 解:用一平面去截球所得截面的面積為3π cm2,∴小圓的半徑為:
3
cm;
已知球心到該截面的距離為1 cm,∴球的半徑為:
12+(
3
)
2
=2,
∴球的體積為:
3
×23
=
32
3
π
(cm3
故答案為:
32
3
π
點(diǎn)評(píng):本題是基礎(chǔ)題,考查球的小圓的半徑,球心到該截面的距離,球的半徑之間的關(guān)系,滿(mǎn)足勾股定理,考查計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如果執(zhí)行如圖的程序框圖,若輸出的s=55,則k=( 。
A、8B、9C、10D、9或10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a∈R,設(shè)函數(shù)g(x)=lg2x-2algx+4,x∈[
1
10
,+∞) 的最小值為h(a)
(Ⅰ)求h(a)的表達(dá)式;
(Ⅱ)是否存在區(qū)間[m,n],使得函數(shù)h(a)在區(qū)間[m,n]上的值域?yàn)閇2m,2n]?若存在,求出m,n的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)x2=2py(p>0)經(jīng)過(guò)點(diǎn)(
2
1
2
),直線(xiàn)l的方程為y=-1.
(1)求p的值;
(2)若點(diǎn)M是直線(xiàn)l上任意一點(diǎn),過(guò)M點(diǎn)作拋物線(xiàn)的兩條切線(xiàn),切點(diǎn)分別為于A,B兩點(diǎn),設(shè)線(xiàn)段AB的中點(diǎn)為N,求點(diǎn)N的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

等比數(shù)列{an}中,已知a2=4,a5=32.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若a3,a5分別為等差數(shù)列{bn}的第3項(xiàng)和第5項(xiàng),試求數(shù)列{bn}的通項(xiàng)公式及前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若曲線(xiàn)y=
x
在點(diǎn)P(a,
a
)處的切線(xiàn)與兩坐標(biāo)軸圍成的三角形的面積為2,則實(shí)數(shù)a的值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某三棱錐的三視圖如圖所示,則它的外接球的半徑為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)拋物線(xiàn)y2=4x的焦點(diǎn)為F,準(zhǔn)線(xiàn)為l,A為拋物線(xiàn)上一點(diǎn),AK⊥l,K為垂足,如果直線(xiàn)KF的斜率為-1,則△AKF的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

命題“存在x∈R,x3-x3+1>0”的否定是( 。
A、不存在x∈R,x3-x3+1≤0
B、存在x∈R,x3-x3+1≤0
C、對(duì)任意的x∈R,x3-x3+1≤0
D、對(duì)任意的x∈R,x3-x3+1>0

查看答案和解析>>

同步練習(xí)冊(cè)答案