【題目】已知M(﹣2,﹣3),N(3,0),直線l過點(﹣1,2)且與線段MN相交,則直線l的斜率k的取值范圍是( 。
A.或k≥5
B.
C.
D.

【答案】A
【解析】解:(如圖象)即P(﹣1,2),
由斜率公式可得PM的斜率k1==5,
直線PN的斜率k2= ,
當直線l與x軸垂直(紅色線)時記為l′,
可知當直線介于l′和PM之間時,k≥5,
當直線介于l′和PN之間時,k≤﹣ ,
故直線l的斜率k的取值范圍是:k≤﹣ , 或k≥5
故選A
【考點精析】根據(jù)題目的已知條件,利用斜率的計算公式的相關知識可以得到問題的答案,需要掌握給定兩點P1(x1,y1),P2(x2,y2),x1≠x2,用兩點的坐標來表示直線P1P2的斜率:斜率公式: k=y2-y1/x2-x1

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】過點A(4,1)的圓C與直線x﹣y﹣1=0相切于點B(2,1),則圓C的方程為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設某大學的女生體重y(單位:kg)與身高x(單位:cm)具有線性相關關系,根據(jù)一組樣本數(shù)據(jù)(xiyi)(i=1,2,…,n),用最小二乘法建立的回歸方程為=0.85x-85.71,則下列結(jié)論中不正確的是( )

A. yx具有正的線性相關關系

B. 若給變量x一個值,由回歸直線方程=0.85x-85.71得到一個,則為該統(tǒng)計量中的估計值

C. 若該大學某女生身高增加1 cm,則其體重約增加0.85 kg

D. 若該大學某女生身高為170 cm,則可斷定其體重必為58.79 kg

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】若點(p,q),在|p|≤3,|q|≤3中按均勻分布出現(xiàn).試求方程x2+2px﹣q2+1=0有兩個實數(shù)根的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設AB=6,在線段AB上任取兩點C、D(端點A、B除外),將線段AB分成三條線段AC、CD、DB.
(1)若分成的三條線段的長度均為正整數(shù),求這三條線段可以構(gòu)成三角形(稱為事件A)的概率;
(2)若分成的三條線段的長度均為正實數(shù),求這三條線段可以構(gòu)成三角形(稱為事件B)的概率;
(3)根據(jù)以下用計算機所產(chǎn)生的20組隨機數(shù),試用隨機數(shù)模擬的方法,來近似計算(2)中事件B的概率, 20組隨機數(shù)如下:

組別

1

2

3

4

5

6

7

8

9

10

X

0.52

0.36

0.58

0.73

0.41

0.6

0.05

0.32

0.38

0.73

Y

0.76

0.39

0.37

0.01

0.04

0.28

0.03

0.15

0.14

0.86

組別

11

12

13

14

15

16

17

18

19

20

X

0.67

0.47

0.58

0.21

0.54

0.64

0.36

0.35

0.95

0.14

Y

0.41

0.54

0.51

0.37

0.31

0.23

0.56

0.89

0.17

0.03

(X和Y都是0~1之間的均勻隨機數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】正四面體ABCD的棱長為2,棱AD與平面α所成的角θ∈[ , ],且頂點A在平面α內(nèi),B,C,D均在平面α外,則棱BC的中點E到平面α的距離的取值范圍是(

A.[ ,1]
B.[ ,1]
C.[ ]
D.[ , ]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在直角坐標系中,曲線,曲線為參數(shù)), 以坐標原點為極點,軸的正半軸為極軸建立極坐標系.

(1)求曲線,的極坐標方程;

(2)若射線)分別交,兩點, 的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)

(1)求曲線與直線垂直的切線方程;

(2)求的單調(diào)遞減區(qū)間;

(3)若存在,使函數(shù)成立,求實數(shù)的取值范圍

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】當今信息時代,眾多高中生也配上了手機.某校為研究經(jīng)常使用手機是否對學習成績有影響,隨機抽取高三年級50名理科生的一次數(shù)學周練成績,用莖葉圖表示如下圖:

(1)根據(jù)莖葉圖中的數(shù)據(jù)完成下面的列聯(lián)表,并判斷是否有95%的把握認為經(jīng)常使用手機對學習成績有影響?

及格(

不及格

合計

很少使用手機

經(jīng)常使用手機

合計

(2)從50人中,選取一名很少使用手機的同學記為甲和一名經(jīng)常使用手機的同學記為乙,解一道數(shù)列題,甲、乙獨立解決此題的概率分別為, , ,若,則此二人適合結(jié)為學習上互幫互助的“師徒”,記為兩人中解決此題的人數(shù),若,問兩人是否適合結(jié)為“師徒”?

參考公式及數(shù)據(jù): ,其中.

<>0.10

0.05

0.025

2.706

3.841

5.024

查看答案和解析>>

同步練習冊答案