過(guò)原點(diǎn)作曲線y=ex的切線,求切點(diǎn)的坐標(biāo)及切線的斜率.
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:計(jì)算題,導(dǎo)數(shù)的概念及應(yīng)用
分析:欲求切點(diǎn)坐標(biāo),只須求出切線的方程即可,故先利用導(dǎo)數(shù)求出在切點(diǎn)處的導(dǎo)函數(shù)值,再結(jié)合導(dǎo)數(shù)的幾何意義即可求出切線的斜率.從而得到切線的方程,最后利用切線過(guò)原點(diǎn)即可解決.
解答: 解:y′=ex
設(shè)切點(diǎn)的坐標(biāo)為(x0,ex0),切線的斜率為k,
則k=ex0,故切線方程為y-ex0=ex0(x-x0),
又切線過(guò)原點(diǎn),∴-ex0=ex0(-x0),∴x0=1,y0=e,k=e.
∴切點(diǎn)(1,e);切線的斜率為e.
點(diǎn)評(píng):本小題主要考查直線的斜率、導(dǎo)數(shù)的幾何意義、利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)a,b滿足a2+b2-4b+3=0,函數(shù)f(x)=asin2x+bcos2x+1的最大值為φ(a,b),則φ(a,b)的最小值為(  )
A、2
B、
2
+1
C、
3
+1
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)2+i(i為虛數(shù)單位)的模為( 。
A、
5
B、±(2+i)
C、
3
D、2+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某學(xué)校隨機(jī)抽取了100名學(xué)生進(jìn)行身高調(diào)查,得到如下統(tǒng)計(jì)表:
身高(cm) [145,155) [155,165) [165,175) [175,185) [185,195) [195,205)
人數(shù) 12 a 35 22 b 2
頻率 0.12 c d 0.22 0.04 0.02
(Ⅰ)求表中b、c、d的值;
(Ⅱ)根據(jù)上面統(tǒng)計(jì)表,估算這100名學(xué)生的平均身高
.
x

(Ⅲ)若從上面100名學(xué)生中,隨機(jī)選取2名身高不低于185cm的學(xué)生,求這2名學(xué)生中至少有1名學(xué)生身高不低于195cm的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)=|2x-1|,x∈R.
(1)若不等式f(x)≤a的解集為{x|0≤x≤1},求a的值;
(2)若g(x)=
1
f(x)+f(x+1)+m
的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在《我是歌手》的比賽中,甲、乙兩位歌手的前十場(chǎng)比賽成績(jī)的莖葉圖如圖所示:

(Ⅰ)請(qǐng)根據(jù)莖葉圖,用統(tǒng)計(jì)的觀點(diǎn),分別從兩個(gè)不同的角度評(píng)價(jià)甲、乙兩位歌手比賽成績(jī)的差異;
(Ⅱ)將每場(chǎng)比賽都選擇支持同一位歌手的觀眾稱為該歌手的“鐵桿粉絲”,現(xiàn)從歌手甲的3位“鐵桿粉絲”和歌手乙的2位“鐵桿粉絲”中任選2人,求2人中至少一位是歌手甲的“鐵桿粉絲”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=x2+2x-1.
(Ⅰ)若定義域?yàn)閇-2,3],求f(x)的值域;
(Ⅱ)若f(x)的值域?yàn)閇-2,2],且定義域?yàn)閇a,b],求b-a的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知各項(xiàng)均為正數(shù)的數(shù)列{an}的前n項(xiàng)和為Sn,且4Sn=an2+2an對(duì)任意的n∈N*恒成立.
(Ⅰ)求a1、a2及數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)bn=
1
anan+1
,記數(shù)列{bn}的前n項(xiàng)和為Tn,是否存在實(shí)數(shù)λ,使不等式λSn+1>anTn+1 對(duì)任意的正整數(shù)n都成立.若存在,求出λ的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=|x-1|+|x+m|(m∈R),g(x)=2x-1,若m>-1,x∈[-m,1],不等式f(x)<g(x)恒成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案