【題目】在中,已知,,,是邊上一點(diǎn),將沿折起,得到三棱錐。若該三棱錐的頂點(diǎn)在底面的射影在線段上,設(shè),則的取值范圍為______.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,側(cè)面為等邊三角形且垂直于底面,
.
(1)證明: ;
(2)若直線與平面所成角為,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知拋物線:的焦點(diǎn)為,其準(zhǔn)線:與軸的交點(diǎn)為,過(guò)點(diǎn)的直線與拋物線交于兩點(diǎn).
(1)求拋物線的方程;
(2)點(diǎn)關(guān)于軸的對(duì)稱點(diǎn)為,證明:存在實(shí)數(shù),使得.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在中,已知、.
(1)若點(diǎn)的坐標(biāo)為,直線,直線交邊于,交邊于,且與的面積之比為,求直線的方程;
(2)若是一個(gè)動(dòng)點(diǎn),且的面積為,試求關(guān)于的函數(shù)關(guān)系式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系中,動(dòng)圓與圓外切,且圓與直線相切,記動(dòng)圓圓心的軌跡為曲線.
(1)求曲線的軌跡方程;
(2)設(shè)過(guò)定點(diǎn)的動(dòng)直線與曲線交于兩點(diǎn),試問(wèn):在曲線上是否存在點(diǎn)(與兩點(diǎn)相異),當(dāng)直線的斜率存在時(shí),直線的斜率之和為定值?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓:,直線過(guò)定點(diǎn).
(1)若與圓相切,求的方程;
(2)若與圓相交于,兩點(diǎn),求三角形面積的最大值,并求此時(shí)的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知的三邊分別為所對(duì)的角分別為,且三邊滿足,已知的外接圓的面積為,設(shè).則的取值范圍為______,函數(shù)的最大值的取值范圍為_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一旅游景區(qū)供游客行走的路線圖,假設(shè)從進(jìn)口開(kāi)始到出口,每遇到一個(gè)岔路口,每位游客選擇其中一條道路行進(jìn)是等可能的.現(xiàn)有甲、乙、丙、丁共名游客結(jié)伴到旅游景區(qū)游玩,他們從進(jìn)口的岔路口就開(kāi)始選擇道路自行游玩,并按箭頭所指路線行走,最后到出口集中,設(shè)點(diǎn)是其中的一個(gè)交叉路口點(diǎn).
(1)求甲經(jīng)過(guò)點(diǎn)的概率;
(2)設(shè)這名游客中恰有名游客都是經(jīng)過(guò)點(diǎn),求隨機(jī)變量的概率分布和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),若方程(為常數(shù))有兩個(gè)不相等的根,則實(shí)數(shù)的取值范圍是( )
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com