【題目】如圖,在直三棱柱ABC-A1B1C1中,AC=BC=CC1,AC⊥BC,點D是AB的中點.
(1)求證:CD⊥平面A1ABB1;
(2)求證:AC1∥平面CDB1.
【答案】(1) 見解析(2)見解析
【解析】
(1)欲證CD⊥平面A1ABB1,可先證平面ABC⊥平面A1ABB1,CD⊥AB,面ABC∩面A1ABB1=AB,滿足根據面面垂直的性質;
(2)欲證AC1∥平面CDB1,根據直線與平面平行的判定定理可知只需證AC1與平面CDB1內一直線平行,連接BC1,設BC1與B1C的交點為E,連接DE.根據中位線可知DE∥AC1,DE平面CDB1,AC1平面CDB1,滿足定理所需條件.
(1)證明:∵ABC-A1B1C1是直三棱柱,
∴平面ABC⊥平面A1ABB1.
∵AC=BC,點D是AB的中點,
∴CD⊥AB,面ABC∩面A1ABB1=AB
∴CD⊥平面A1ABB1.
(2)證明:連接BC1,設BC1與B1C的交點為E,連接DE.
∵D是AB的中點,E是BC1的中點,
∴DE∥AC1.∵DE平面CDB1,AC1平面CDB1,
∴AC1∥平面CDB1.
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=x2(lnx+lna)(a>0).
(1)當a=1時,設函數g(x)= ,求函數g(x)的單調區(qū)間與極值;
(2)設f′(x)是f(x)的導函數,若 ≤1對任意的x>0恒成立,求實數a的取值范圍;
(3)若x1 , x2∈( ,1),x1+x2<1,求證:x1x2<(x1+x2)4 .
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】假設某種設備使用的年限x(年)與所支出的維修費用y(萬元)有以下統(tǒng)計資料:
使用年限x | 2 | 3 | 4 | 5 | 6 |
維修費用y | 2 | 4 | 5 | 6 | 7 |
若由資料知y對x呈線性相關關系。試求:
(1)求; (2)線性回歸方程;
(3)估計使用10年時,維修費用是多少?
附:利用“最小二乘法”計算a,b的值時,可根據以下公式:
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】“雙十一”已經成為網民們的網購狂歡節(jié),某電子商務平臺對某市的網民在今年“雙十一”的網購情況進行摸底調查,用隨機抽樣的方法抽取了100人,其消費金額(百元)的頻率分布直方圖如圖所示:
(1)求網民消費金額的平均值和中位數;
(2)把下表中空格里的數填上,能否有90%的把握認為網購消費與性別有關;
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數f(x)=lg的圖象關于原點對稱,其中a為常數.
(Ⅰ)求a的值,并求出f(x)的定義域
(Ⅱ)關于x的方程f(2x)+21g(2x-1)=a在x∈[,]有實數解,求a的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知f(x)是定義在(0,+∞)上的增函數,且滿足f(xy)=f(x)+f(y),f(2)=1.
(1)求f(8)的值;
(2)求不等式f(x)-f(x-2)>3的解集.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數,.
(1)求函數的單調遞增區(qū)間;
(2)當時,方程恰有兩個不同的實數根,求實數的取值范圍;
(3)將函數的圖象向右平移個單位后所得函數的圖象關于原點中心對稱,求的最小值.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com