科目:高中數(shù)學 來源: 題型:
x |
2 |
x |
2 |
1 |
2 |
π |
2 |
5π |
4 |
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年浙江省高三3月月考理科數(shù)學試卷(解析版) 題型:解答題
設(shè)函數(shù) f (x)=ax-lnx-3(a∈R),g(x)=xe1-x.
(Ⅰ)若函數(shù) g(x) 的圖象在點 (0,0) 處的切線也恰為 f (x) 圖象的一條切線,求實數(shù) a的值;
(Ⅱ)是否存在實數(shù)a,對任意的 x∈(0,e],都有唯一的 x0∈[e-4,e],使得 f (x0)=g(x) 成立.若存在,求出a的取值范圍;若不存在,請說明理由.
注:e是自然對數(shù)的底數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源:新課標高三數(shù)學導(dǎo)數(shù)專項訓(xùn)練(河北) 題型:選擇題
設(shè)a∈R,函數(shù)f(x)=x3+ax2+(a-3)x的導(dǎo)函數(shù)是f′(x),若f′(x)是偶函數(shù),則曲線y=f(x)在原點處的切線方程為 ( )
A.y=-3x B.y=-2x
C.y=3x D.y=2x
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011學年湖北省、鐘祥一中高三第二次聯(lián)考數(shù)學理卷 題型:解答題
(14分)設(shè)函數(shù)f(x)=xn(n≥2,n∈N*)
(1)若Fn(x)=f(x-a)+f(b-x)(0<a<x<b),求Fn(x)的取值范圍;
(2)若Fn(x)=f(x-b)-f(x-a),對任意n≥a (2≥a>b>0),
證明:F(n)≥n(a-b)(n-b)n-2。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com