【題目】如圖,在直三棱柱ABC﹣A1B1C1中,AC=AA1=4,AB=3,AB⊥AC.

(Ⅰ)求證:A1C⊥平面ABC1
(Ⅱ)求二面角A﹣BC1﹣A1的平面角的余弦值.

【答案】(Ⅰ)證明::由已知AA1⊥AB,又AB⊥AC,

∴AB⊥平面ACC1A1,

∴A1C⊥AB,又AC=AA1=4,∴A1C⊥AC1

∵AC1∩AB=A,∴A1C⊥平面ABC1;

(Ⅱ)解:以A為原點,以AC、AB、AA1所在的直線分別為x、y、z軸,建立空間直角坐標(biāo)系
, ,

設(shè) 平面A1BC1,

,取y=4,得 ;

由(Ⅰ)知, 為平面ABC1的法向量,

設(shè)二面角A﹣BC1﹣A1的大小為θ,由題意可知θ為銳角,

即二面角A﹣BC1﹣A1的余弦值為


【解析】(Ⅰ)由線面垂直的判定定理可得出AB⊥平面ACC1A1即得A1C⊥AB,再利用線面垂直的判定定理可得證。(Ⅱ)根據(jù)題意建立空間直角坐標(biāo)系,分別求出各個點的坐標(biāo)進(jìn)而可求出各個向量的坐標(biāo),根據(jù)向量的垂直關(guān)系求出平面ABC1的法向量又已知平面ABC1的法向量,利用兩個法向量所成的角即為二面角的平面角,再根據(jù)向量的數(shù)量積運算公式求該角的余弦值即可。
【考點精析】通過靈活運用直線與平面垂直的判定,掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學(xué)思想即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題:
①α>β的充分不必要條件是sinα>sinβ
②若a,b∈R,ab<0,則
③命題“若x+y≠5,則x≠2或y≠3”的否命題為假命題
④若a≠b,則a3+b3>a2b+ab2
其中真命題的序號是 . (請把所有真命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點的橢圓C的左焦點F(﹣ ,0),右頂點A(2,0).
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)斜率為 的直線l與橢圓C交于A、B兩點,求弦長|AB|的最大值及此時l的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知圓M:(x+1)2+y2= 的圓心為M,圓N:(x﹣1)2+y2= 的圓心為N,一動圓與圓M內(nèi)切,與圓N外切.
(Ⅰ)求動圓圓心P的軌跡方程;
(Ⅱ)過點(1,0)的直線l與曲線P交于A,B兩點,若 =﹣2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知以點A(-1,2)為圓心的圓與直線l1x+2y+7=0相切.過點B(-2,0)的動直線l與圓A相交于M,N兩點,QMN的中點.

(1)求圓A的方程;

(2)當(dāng)|MN|=2時,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱,底面為等邊三角形 .

求三棱錐的體積;

在線段上尋找一點使得,請說明作法和理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】拋擲兩顆骰子,計算:

1)事件兩顆骰子點數(shù)相同的概率;

2)事件點數(shù)之和小于7”的概率;

3)事件點數(shù)之和等于或大于11”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司一年需購買某種原料600噸,設(shè)公司每次都購買,每次運費為3萬元,一年的總存儲費為萬元,一年的總運費與總存儲費之和為(單位:萬元)

1)試用解析式得表示成的函數(shù)

2)當(dāng)為何值時, 取得最小值并求出的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列{an}的前n項和為Sn , 且滿足Sn=2an﹣2;數(shù)列{bn}的前n項和為Tn , 且滿足b1=1,b2=2,
(1)求數(shù)列{an}、{bn}的通項公式;
(2)是否存在正整數(shù)n,使得 恰為數(shù)列{bn}中的一項?若存在,求所有滿足要求的bn;若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案