已知函數(shù)f(x)及其導(dǎo)數(shù)f′(x),若存在x0,使得f(x0)=f′(x0),則稱(chēng)x0是f(x)的一個(gè)“巧值點(diǎn)”,下列函數(shù)中,有“巧值點(diǎn)”的是
①③⑤
①③⑤
.(填上正確的序號(hào))
①f(x)=x2,
②f(x)=e-x,
③f(x)=lnx,
④f(x)=tanx,
⑤f(x)=x+
1x
分析:分別求函數(shù)的導(dǎo)數(shù),根據(jù)條件f(x0)=f′(x0),確實(shí)是否有解即可.
解答:解:①中的函數(shù)f(x)=x2,f'(x)=2x.要使f(x)=f′(x),則x2=2x,解得x=0或2,可見(jiàn)函數(shù)有巧值點(diǎn);
對(duì)于②中的函數(shù),要使f(x)=f′(x),則e-x=-e-x,由對(duì)任意的x,有e-x>0,可知方程無(wú)解,原函數(shù)沒(méi)有巧值點(diǎn);
對(duì)于③中的函數(shù),要使f(x)=f′(x),則lnx=
1
x
,由函數(shù)f(x)=lnx與y=
1
x
的圖象它們有交點(diǎn),因此方程有解,原函數(shù)有巧值點(diǎn);
對(duì)于④中的函數(shù),要使f(x)=f′(x),則tanx=
1
cos2x
,即sinxcosx=1,顯然無(wú)解,原函數(shù)沒(méi)有巧值點(diǎn);
對(duì)于⑤中的函數(shù),要使f(x)=f′(x),則x+
1
x
=1-
1
x2
,即x3-x2+x+1=0,設(shè)函數(shù)g(x)=x3-x2+x+1,g'(x)=3x2-2x+1>0且g(-1)<0,g(0)>0,
顯然函數(shù)g(x)在(-1,0)上有零點(diǎn),原函數(shù)有巧值點(diǎn).
故答案為:①③⑤.
點(diǎn)評(píng):本題主要考查導(dǎo)數(shù)的應(yīng)用,以及函數(shù)的方程的判斷,考查學(xué)生的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•韶關(guān)一模)已知函數(shù)f(x)=2cos2ωx+2
3
sinωxcosωx-1(ω>0)的最小正周期為π.
(1)求f(
π
3
)的值;
(2)求函數(shù)f(x)的單調(diào)遞增區(qū)間及其圖象的對(duì)稱(chēng)軸方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•靜安區(qū)一模)已知函數(shù)f(x)=x2+ax+3-a,a∈R.
(1)求a的取值范圍,使y=f(x)在閉區(qū)間[-1,3]上是單調(diào)函數(shù);
(2)當(dāng)0≤x≤2時(shí),函數(shù)y=f(x)的最小值是關(guān)于a的函數(shù)m(a).求m(a)的最大值及其相應(yīng)的a值;
(3)對(duì)于a∈R,研究函數(shù)y=f(x)的圖象與函數(shù)y=|x2-2x-3|的圖象公共點(diǎn)的個(gè)數(shù)、坐標(biāo),并寫(xiě)出你的研究結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)f(x)及其導(dǎo)數(shù)f′(x),若存在x0,使得f(x0)=f′(x0),則稱(chēng)x0是f(x)的一個(gè)“巧值點(diǎn)”,下列函數(shù)中,有“巧值點(diǎn)”的是______.(填上正確的序號(hào))
①f(x)=x2,
②f(x)=e-x
③f(x)=lnx,
④f(x)=tanx,
⑤f(x)=x+
1
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年湖北省荊州中學(xué)高三(上)第一次質(zhì)檢數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知函數(shù)f(x)及其導(dǎo)數(shù)f′(x),若存在x,使得f(x)=f′(x),則稱(chēng)x是f(x)的一個(gè)“巧值點(diǎn)”,下列函數(shù)中,有“巧值點(diǎn)”的是    .(填上正確的序號(hào))
①f(x)=x2,
②f(x)=e-x
③f(x)=lnx,
④f(x)=tanx,
⑤f(x)=x+

查看答案和解析>>

同步練習(xí)冊(cè)答案