設命題:函數(shù)的定義域為;命題對一切的實數(shù)恒成立,如果命題“”為假命題,求實數(shù)的取值范圍.

解析試題分析:對于命題,函數(shù)的定義域為,說明對于任意的,恒成立,利用一元二次不等式知識求解;對于命題q,求出的最大值,讓大于的最大值;命題“”為假命題,說明、至少一假,討論求解.
試題解析:命題:對于任意的恒成立,則需滿足,                          4分
因為“”為假命題,所以至少一假
(1)若假,則是空集。                          5分
(2)若真,則                           7分
(3)若假,則                               9分
所以                                                           10分
考點:命題及其關系、一元二次不等式恒成立問題、函數(shù)最值求法.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

設命題:函數(shù)在區(qū)間上單調(diào)遞減;命題:函數(shù)的最小值不大于0.如果命題為真命題,為假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知命題:“不等式對任意恒成立”,命題:“方程表示焦點在x軸上的橢圓”,若為真命題,為真,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知,設:函數(shù)單調(diào)遞減;:函數(shù)在區(qū)間有兩個零點.如果有且僅有一個正確,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知命題:方程無實根,命題:方程是焦點在軸上的橢圓.若同時為假命題,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知命題:函數(shù)上單調(diào)遞增;命題:不等式的解集為,若為真,為假,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知命題函數(shù)的值域為,命題方程上有解,若命題“”是假命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知命題p:任意x∈R,x2+1≥a都成立,命題q:方程表示雙曲線.
(1)若命題p為真命題,求實數(shù)a的取值范圍;
(2)若 “p且q”為真命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分12分)
設命題:實數(shù)滿足,其中;命題:實數(shù)滿足的必要不充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習冊答案