已知數(shù)學公式,求:sinx+cosx.

解:∵,sin2x=,
,又
∴:sinx+cos=
故答案為:
分析:將兩端平方,求得sin2x的值,再將sinx+cosx平方后計算,將結(jié)果開方即可.
點評:本題考查同角三角函數(shù)基本關系的運用,著重考查二倍角公示的運用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知向量
a
=(sinx,0),
b
=(cosx,1),其中 0<x<
3
,求|
1
2
a
-
3
2
b
|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對邊,且(2a+c)cosB+bcosC=0.
(Ⅰ)求角B的值;
(Ⅱ)已知函數(shù)f(x)=sinx•cosx-
3
cos2x+sinB
,求f(x)的單調(diào)遞增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知:向量
m
=(sinx,-1),
n
=(
3
cosx,-
1
2
)
,設f(x)=(
m
+
n
m
-1.
(1)求f(x)的表達式;
(2)求函數(shù)f(x)的圖象與其對稱軸的交點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sinx(
3
cosx-sinx)

(Ⅰ)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若A是銳角三角形△ABC的一個內(nèi)角,求f(A)的最大值與最小值.

查看答案和解析>>

同步練習冊答案