【題目】已知△ABC中,AB=4,AC=2,|λ +(2﹣2λ) |(λ∈R)的最小值為2 ,若P為邊AB上任意一點,則 的最小值是 .
【答案】﹣4
【解析】解:由題意可知:丨 丨=4,丨 丨=2,|λ +(2﹣2λ) |= = ,
= ,
=4 ,
=f(λ),
當cosA=0時,f(λ)=4 =4 ≥2 ,
由2 >2 ,
∴A= ,
則建立直角坐標系,A(0,0),B(4,0),C(0,2),
設P(x,0),(0<x<4),
=(4﹣x,0), =(﹣x,2),
∴ =﹣x(4﹣x)=x2﹣4x=(x﹣2)2﹣4,
∴當x=2時, 取最小值,最小值為:﹣4,
當cosA≠0時,f(λ)=4 ≥4 =2 ,
整理得:1+cosA= ,解得:cosA= ,
∴A= ,
∴建立直角坐標系,A(0,0),B(4,0),C(1, ),
設P(x,0),(0<x<4),
=(4﹣x,0), =(1﹣x, ),
則 =(4﹣x)(1﹣x)=x2﹣5x+4=(x﹣ )2﹣ ,
當x= 時, 取最小值,最小值為:﹣ ,
故 的最小值﹣4,
所以答案是:﹣4.
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}是各項均為正數(shù)的等差數(shù)列,其中a1=1,且a2、a4、a6+2成等比數(shù)列;數(shù)列{bn}的前n項和為Sn , 滿足2Sn+bn=1
(1)求數(shù)列{an}、{bn}的通項公式;
(2)如果cn=anbn , 設數(shù)列{cn}的前n項和為Tn , 求證:Tn<Sn+ .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=lnx+
(1)若函數(shù)有兩個極值點,求實數(shù)a的取值范圍;
(2)對所有的a≥ ,m∈(0,1),n∈(1,+∞),求f(n)﹣f(m)的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】一個盒子裝有六張卡片,上面分別寫著如下六個函數(shù):,,,
(I)從中任意拿取張卡片,若其中有一張卡片上寫著的函數(shù)為奇函數(shù),在此條件下,求兩張卡片上寫著的函數(shù)相加得到的新函數(shù)為奇函數(shù)的概率;
(II)現(xiàn)從盒子中逐一抽取卡片,且每次取出后均不放回,若取到一張寫有偶函數(shù)的卡片則停止抽取,否則繼續(xù)進行,求抽取次數(shù)的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】甲、乙兩超市同時開業(yè),第一年的全年銷售額為a萬元,由于經(jīng)營方式不同,甲超市前n年的總銷售額為 (n2-n+2)萬元,乙超市第n年的銷售額比前一年銷售額多a萬元.
(1)求甲、乙兩超市第n年銷售額的表達式;
(2)若其中某一超市的年銷售額不足另一超市的年銷售額的50%,則該超市將被另一超市收購,判斷哪一超市有可能被收購?如果有這種情況,將會出現(xiàn)在第幾年?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)= 圖象過點(﹣1,2),且在該點處的切線與直線x﹣5y+1=0垂直.
(1)求實數(shù)b,c的值;
(2)對任意給定的正實數(shù)a,曲線y=f(x)上是否存在兩點P,Q,使得△POQ是以O為直角頂點的直角三角形,且此三角形斜邊中點在y軸上?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)f(x)=ax2+bx+c的圖象與x軸有兩個不同的交點,若f(c)=0且0<x<c時,f(x)>0,
(1)證明:是f(x)=0的一個根;
(2)試比較與c的大小;
(3)證明:-2<b<-1.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,正三棱柱中為的中點。
(1)求證:;
(2)若點為四邊形內(nèi)部及其邊界上的點,且三棱錐的體積為三棱柱體積的,試在圖中畫出點的軌跡,并說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com