分析 (1)利用向量平行,列出方程,利用正弦定理,化簡求解即可.
(2)利用余弦定理求出c,然后利用面積公式求解即可.
解答 解:(1)因?yàn)橄蛄?\overrightarrow{m}$=(cosA,a)與$\overrightarrow{n}$=(sinB,$\sqrt{3}$b)平行,
所以$asinB-\sqrt{3}bcosA=0$,
由正弦定理,得$sinAsinB-\sqrt{3}sinBcosA=0$,
又sinB≠0,從而$tanA=\sqrt{3}$,
由于0<A<π,所以$A=\frac{π}{3}$,
(2)由余弦定理,得a2=b2+c2-2bccosA,
而$a=\sqrt{7},b=2,A=\frac{π}{3}$,
得7=4+c2-2c,即c2-2c-3=0,
因?yàn)閏>0,所以c=3.
故△ABC的面積為$\frac{1}{2}bcsinA=\frac{{3\sqrt{3}}}{2}$.
點(diǎn)評(píng) 本題考查正弦定理以及余弦定理的應(yīng)用,向量共線的充要條件的應(yīng)用,考查轉(zhuǎn)化思想以及計(jì)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | [-7,7$\sqrt{2}$] | B. | [-7$\sqrt{2}$,7$\sqrt{2}$] | C. | [-7,7] | D. | [0,7$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 120 | B. | 140 | C. | 180 | D. | 200 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{5}{3}$ | C. | $\frac{4}{5}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 24種 | B. | 18種 | C. | 72種 | D. | 36種 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com