(2009•金山區(qū)二模)10件產(chǎn)品中,一級(jí)品7件,二級(jí)品3件,現(xiàn)在隨機(jī)抽四件檢查,至少有3件是一級(jí)品的概率為
2
3
2
3
.(結(jié)果用分?jǐn)?shù)表示)
分析:至少有3件是一級(jí)品包括兩種情況,一是有三件一級(jí)品,二是都是一級(jí)品,得到數(shù)目;再與總數(shù)相比即可得到答案.
解答:解:至少有3件是一級(jí)品包括兩種情況,一是有三件一級(jí)品,二是都是一級(jí)品,
所以基本事件的數(shù)目為:C73C31+C74
∴至少有3件是一級(jí)品的概率為:
C
3
7
C
1
3
+
C
4
7
C
4
10
=
2
3

故答案為:
2
3
點(diǎn)評(píng):本題考查等可能事件的概率以及排列組合的實(shí)際應(yīng)用.解答本題關(guān)鍵是利用排列組合公式與計(jì)數(shù)原理求出事件所包含的基本事件數(shù),
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•金山區(qū)二模)用數(shù)學(xué)歸納法證明1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
=
1
n+1
+
1
n+2
+…+
1
2n
(n∈N*),則從“n=k到n=k+1”,左邊所要添加的項(xiàng)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•金山區(qū)二模)函數(shù)f(x)=sinπx的最小正周期是
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•金山區(qū)二模)已知f(x)為奇函數(shù),且當(dāng)x>0時(shí)f(x)=x(x-1),則f(-3)=
-6
-6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•金山區(qū)二模)函數(shù)y=lg(x2-2x+4)的單調(diào)遞減區(qū)間是
(-∞,1),(端點(diǎn)1處不考慮開(kāi)和閉)
(-∞,1),(端點(diǎn)1處不考慮開(kāi)和閉)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

(2009•金山區(qū)二模)設(shè)函數(shù)f(x)=x2+x.(1)解不等式:f(x)<0;(2)請(qǐng)先閱讀下列材料,然后回答問(wèn)題.
材料:已知函數(shù)g(x)=-
1
f(x)
,問(wèn)函數(shù)g(x)是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,說(shuō)明理由.一個(gè)同學(xué)給出了如下解答:
解:令u=-f(x)=-x2-x,則u=-(x+
1
2
2+
1
4
,
當(dāng)x=-
1
2
時(shí),u有最大值,umax=
1
4
,顯然u沒(méi)有最小值,
∴當(dāng)x=-
1
2
時(shí),g(x)有最小值4,沒(méi)有最大值.
請(qǐng)回答:上述解答是否正確?若不正確,請(qǐng)給出正確的解答;
(3)設(shè)an=
f(n)
2n-1
,請(qǐng)?zhí)岢龃藛?wèn)題的一個(gè)結(jié)論,例如:求通項(xiàng)an.并給出正確解答.
注意:第(3)題中所提問(wèn)題單獨(dú)給分,.解答也單獨(dú)給分.本題按照所提問(wèn)題的難度分層給分,解答也相應(yīng)給分,如果同時(shí)提出兩個(gè)問(wèn)題,則就高不就低,解答也相同處理.

查看答案和解析>>

同步練習(xí)冊(cè)答案