【題目】近日,據(jù)媒體報(bào)道稱,“雜交水稻之父”袁隆平及其團(tuán)隊(duì)培育的超級(jí)雜交稻品種“湘兩優(yōu)900(超優(yōu)千號(hào))”再創(chuàng)畝產(chǎn)世界紀(jì)錄,經(jīng)第三方專家測(cè)產(chǎn),該品種的水稻在實(shí)驗(yàn)田內(nèi)畝產(chǎn)1203.36公斤.中國工程院院士袁隆平在1973年率領(lǐng)科研團(tuán)隊(duì)開啟了的雜交水稻王國的大門,在數(shù)年的時(shí)間內(nèi)就解決了十多億人的吃飯問題,有力回答了世界“誰來養(yǎng)活中國”的疑問.2012年,在袁隆平的實(shí)驗(yàn)田內(nèi)種植了,兩個(gè)品種的水稻,為了篩選出更優(yōu)的品種,在,兩個(gè)品種的實(shí)驗(yàn)田中分別抽取7塊實(shí)驗(yàn)田,如圖所示的莖葉圖記錄了這14塊實(shí)驗(yàn)田的畝產(chǎn)量(單位:),通過莖葉圖比較兩個(gè)品種的均值及方差,并從中挑選一個(gè)品種進(jìn)行以后的推廣,有如下結(jié)論:①.品種水稻的平均產(chǎn)量高于品種水稻,推廣品種水稻;②.品種水稻的平均產(chǎn)量高于品種水稻,推廣品種水稻;③.品種水稻的比品種水稻產(chǎn)量更穩(wěn)定,推廣品種水稻;④.品種水稻的比品種水稻產(chǎn)量更穩(wěn)定,推廣品種水稻;

其中正確結(jié)論的編號(hào)為( )

A. ①② B. ①③ C. ②④ D. ①④

【答案】D

【解析】

由莖葉圖中的葉的分布情況可知品種水稻的平均產(chǎn)量高于品種水稻,利用數(shù)據(jù)集中的程度,可以判斷兩組的方差的大小.

∵對(duì)品種,由莖葉圖中的葉多數(shù)分布在90到100,而品種莖葉圖中的葉多數(shù)分布在70到89,可知品種水稻的平均產(chǎn)量高于品種水稻,

由莖葉圖中的數(shù)據(jù)可知,品種都集中在84附近,而品種比較分散,

∴根據(jù)數(shù)據(jù)分布集中程度與方差之間的關(guān)系可得SB2SA2,

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知三棱柱的底面是邊長為2的正三角形,側(cè)棱與下底面相鄰的兩邊AB,AC均成45度的角.

(1)求點(diǎn)到平面B1BCC1的距離.

(2)試問,當(dāng)為多長時(shí),點(diǎn)到平面與到平面的距離相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的離心率為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)若不過原點(diǎn)的直線與橢圓相交于兩點(diǎn),與直線相交于點(diǎn),且是線段的中點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題文)已知正方體的棱長為1,每條棱所在直線與平面α所成的角都相等,則α截此正方體所得截面面積的最大值為

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從甲地到乙地要經(jīng)過3個(gè)十字路口,設(shè)各路口信號(hào)燈工作相互獨(dú)立,且在各路口遇到紅燈的概率分別為

(Ⅰ)設(shè)表示一輛車從甲地到乙地遇到紅燈的個(gè)數(shù),求隨機(jī)變量的分布列和數(shù)學(xué)期望;

(Ⅱ)若有2輛車獨(dú)立地從甲地到乙地,求這2輛車共遇到1個(gè)紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在圓上任取一點(diǎn),過點(diǎn)軸的垂線段為垂足.當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),線段的中點(diǎn)形成軌跡

1)求軌跡的方程;

2)若直線與曲線交于兩點(diǎn),為曲線上一動(dòng)點(diǎn),求面積的最大值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】黨的十八大將生態(tài)文明建設(shè)納入中國特色社會(huì)主義事業(yè)“五位一體”總體布局,“美麗中國”成為中華民族追求的新目標(biāo).十九大報(bào)告中多次出現(xiàn)的“綠色”“低碳”“節(jié)約”等詞語,正在走入百姓生活,城市出行的新變革正在悄然發(fā)生,綠色出行的理念已深入人心,建設(shè)美麗中國,綠色出行至關(guān)重要,騎自行車或步行漸漸成為市民的一種出行習(xí)慣.某市環(huán)保機(jī)構(gòu)隨機(jī)抽查統(tǒng)計(jì)了該市部分成年市民某月騎車次數(shù),統(tǒng)計(jì)如下:

次數(shù)

年齡

18歲至31歲

8

12

20

60

140

150

32歲至44歲

12

28

20

140

60

150

45歲至59歲

25

50

80

100

225

450

60歲及以上

25

10

10

19

4

2

聯(lián)合國世界衛(wèi)生組織于2013年確定新的年齡分段:44歲及以下為青年人,45歲至59歲為中年人,60歲及以上為老人.

(1)若從被抽查的該月騎車次數(shù)在的老年人中隨機(jī)選出兩名幸運(yùn)者給予獎(jiǎng)勵(lì),求其中一名幸運(yùn)者該月騎車次數(shù)在之間,另一名幸運(yùn)者該月騎車次數(shù)在之間的概率;

(2)用樣本估計(jì)總體的思想,解決如下問題:

①估計(jì)該市在32歲至44歲年齡段的一個(gè)青年人每月騎車的平均次數(shù);

②若月騎車次數(shù)不少于30次者稱為“騎行愛好者”,根據(jù)這些數(shù)據(jù),統(tǒng)計(jì)并完成下表,說明能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為“騎行愛好者”與“青年人”有關(guān)?

青年人

非青年人

合計(jì)

騎行愛好者

非騎行愛好者

合計(jì)

0.10

0.05

0.025

0.10

0.005

0.001

2.706

3.841

5.024

6.635

7.879

10.828

參數(shù)數(shù)據(jù):

(其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知曲線的一條切線過點(diǎn).

(Ⅰ)求的取值范圍;

(Ⅱ)若.

①討論函數(shù)的單調(diào)性;

②當(dāng)時(shí),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{an}滿足:a1=,a2=,且a1a2+a2a3+…+anan+1=na1an+1對(duì)任何的正整數(shù)n都成立,則的值為( 。

A. 5032 B. 5044 C. 5048 D. 5050

查看答案和解析>>

同步練習(xí)冊(cè)答案