設(shè)雙曲線數(shù)學(xué)公式-y2=1的右頂點(diǎn)為A,P是雙曲線上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),從A引雙曲線的兩條漸近線的平行線與直線OP (O為坐標(biāo)原點(diǎn))分別交于Q和R兩點(diǎn).
(1)證明:無(wú)論P(yáng)點(diǎn)在什么位置,總有|數(shù)學(xué)公式|2=|數(shù)學(xué)公式數(shù)學(xué)公式|;
(2)設(shè)動(dòng)點(diǎn)C滿足條件:數(shù)學(xué)公式=數(shù)學(xué)公式數(shù)學(xué)公式+數(shù)學(xué)公式),求點(diǎn)C的軌跡方程.

解:(1)設(shè)OP:y=kx與AR:y=聯(lián)立,解得=,
同理可得,所以||=,
設(shè)=(m,n),則由雙曲線方程與OP方程聯(lián)立解得,
所以||2==||(點(diǎn)在雙曲線上,1-4k2>0);
(2)∵=+),
∴點(diǎn)C為QR的中點(diǎn),設(shè)C(x,y),
則有,消去k,可得所求軌跡方程為x2-2x-4y2=0(x≠0).
分析:(1)設(shè)OP:y=kx與AR:y=聯(lián)立,解得=,同理可得,所以||=,由此知||2==||.
(2)由=+),知點(diǎn)C為QR的中點(diǎn),設(shè)C(x,y),有,消去k,可得所求軌跡方程.
點(diǎn)評(píng):本題考查直線和圓錐曲線的位置關(guān)系,解題時(shí)要認(rèn)真審題,注意合理地進(jìn)行等價(jià)轉(zhuǎn)化.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)江蘇省無(wú)錫市青陽(yáng)高級(jí)中學(xué)高三(上)月考數(shù)學(xué)試卷(一)(解析版) 題型:填空題

設(shè)雙曲線-y2=1的右焦點(diǎn)為F,點(diǎn)P1、P2、…、Pn是其右上方一段(2≤x≤2,y≥0)上的點(diǎn),線段|PkF|的長(zhǎng)度為ak,(k=1,2,3,…,n).若數(shù)列{an}成等差數(shù)列且公差d∈(,),則n最大取值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年上海市靜安、楊浦、青浦、寶山區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)雙曲線-y2=1的右焦點(diǎn)為F,點(diǎn)P1、P2、…、Pn是其右上方一段(2≤x≤2,y≥0)上的點(diǎn),線段|PkF|的長(zhǎng)度為ak,(k=1,2,3,…,n).若數(shù)列{an}成等差數(shù)列且公差d∈(,),則n最大取值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年上海市靜安、楊浦、青浦、寶山區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

設(shè)雙曲線-y2=1的右焦點(diǎn)為F,點(diǎn)P1、P2、…、Pn是其右上方一段(2≤x≤2,y≥0)上的點(diǎn),線段|PkF|的長(zhǎng)度為ak,(k=1,2,3,…,n).若數(shù)列{an}成等差數(shù)列且公差d∈(),則n最大取值為   

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2005年浙江省杭州市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

設(shè)雙曲線-y2=1的右頂點(diǎn)為A,P是雙曲線上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),從A引雙曲線的兩條漸近線的平行線與直線OP (O為坐標(biāo)原點(diǎn))分別交于Q和R兩點(diǎn).
(1)證明:無(wú)論P(yáng)點(diǎn)在什么位置,總有||2=||;
(2)設(shè)動(dòng)點(diǎn)C滿足條件:=+),求點(diǎn)C的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案