【題目】對(duì)于函數(shù),若存在實(shí)數(shù)對(duì)(),使得等式對(duì)定義域中的每一個(gè)都成立,則稱函數(shù)“()型函數(shù)”.

(1) 判斷函數(shù)是否為 “()型函數(shù),并說(shuō)明理由;

(2) 若函數(shù)“()型函數(shù)”,求出滿足條件的一組實(shí)數(shù)對(duì);

(3)已知函數(shù)“()型函數(shù)”,對(duì)應(yīng)的實(shí)數(shù)對(duì)(1,4).當(dāng) 時(shí), ,若當(dāng)時(shí),都有,試求的取值范圍.

【答案】(1) 不是“()型函數(shù)(2) ;(3) .

【解析】試題分析:(1)根據(jù)()型函數(shù)的定義,可以驗(yàn)證不符合要求;(2)函數(shù)“()型函數(shù)”,等式成立,推導(dǎo)出,滿足此關(guān)系的如都可以;(3)根據(jù)()型函數(shù)定義,先求出,寫(xiě)出函數(shù)解析式根據(jù)解析式得出值域再根據(jù),求出m的取值范圍.

試題解析:

(1) 不是“()型函數(shù),因?yàn)椴淮嬖趯?shí)數(shù)對(duì)使得,

對(duì)定義域中的每一個(gè)都成立;

(2) ,,所以存在實(shí)數(shù)對(duì),

,使得對(duì)任意的都成立;

(3) 由題意得, ,所以當(dāng)時(shí), ,其中,時(shí), ,其對(duì)稱軸方程為.

當(dāng),時(shí), 上的值域?yàn)?/span>,, 的值域?yàn)?/span>,由題意得,從而;

當(dāng),時(shí), 的值域?yàn)?/span>,, 上的值域?yàn)?/span>,則由題意,

,解得;當(dāng),時(shí), 的值域?yàn)?/span>,,上的值域?yàn)?/span>,,,

解得

綜上所述,所求的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了打好脫貧攻堅(jiān)戰(zhàn),某貧困縣農(nóng)科院針對(duì)玉米種植情況進(jìn)行調(diào)研,力爭(zhēng)有效的改良玉米品種,為農(nóng)民提供技術(shù)支.現(xiàn)對(duì)已選出的一組玉米的莖高進(jìn)行統(tǒng)計(jì),獲得莖葉圖如右圖(單位:厘米),設(shè)莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.

1)完成列聯(lián)表,并判斷是否可以在犯錯(cuò)誤的概率不超過(guò)1%的前提下,認(rèn)為抗倒伏與玉米矮莖有關(guān)?

2為了改良玉米品種,現(xiàn)采用分層抽樣的方法從抗倒伏的玉米中抽出5株,再?gòu)倪@5株玉米中選取2株進(jìn)行雜交試驗(yàn),選取的植株均為矮莖的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義在D上的函數(shù),若滿足: ,都有成立,則稱D上的有界函數(shù),其中M稱為函數(shù)的上界.

(I)設(shè),證明: 上是有界函數(shù),并寫(xiě)出所有上界的值的集合;

(II)若函數(shù)上是以3為上界的有界函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】交強(qiáng)險(xiǎn)是車(chē)主必須為機(jī)動(dòng)車(chē)購(gòu)買(mǎi)的險(xiǎn)種,若普通6座以下私家車(chē)投保交強(qiáng)險(xiǎn)第一年的費(fèi)用(基準(zhǔn)保費(fèi))統(tǒng)一為元,在下一年續(xù)保時(shí),實(shí)行的是費(fèi)率浮動(dòng)機(jī)制,保費(fèi)與上一年度車(chē)輛發(fā)生道路交通事故的情況相聯(lián)系,發(fā)生交通事故的次數(shù)越多,費(fèi)率也就是越高,具體浮動(dòng)情況如下表:

交強(qiáng)險(xiǎn)浮動(dòng)因素和浮動(dòng)費(fèi)率比率表

浮動(dòng)因素

浮動(dòng)比率

上一個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮10%

上兩個(gè)年度未發(fā)生有責(zé)任道路交通事故

下浮20%

上三個(gè)及以上年度未發(fā)生有責(zé)任道路交通事故

下浮30%

上一個(gè)年度發(fā)生一次有責(zé)任不涉及死亡的道路交通事故

0%

上一個(gè)年度發(fā)生兩次及兩次以上有責(zé)任道路交通事故

上浮10%

上一個(gè)年度發(fā)生有責(zé)任道路交通死亡事故

上浮30%

某機(jī)構(gòu)為了 某一品牌普通6座以下私家車(chē)的投保情況,隨機(jī)抽取了60輛車(chē)齡已滿三年的該品牌同型號(hào)私家車(chē)的下一年續(xù)保時(shí)的情況,統(tǒng)計(jì)得到了下面的表格:

類(lèi)型

數(shù)量

10

5

5

20

15

5

以這60輛該品牌車(chē)的投保類(lèi)型的頻率代替一輛車(chē)投保類(lèi)型的概率,完成下列問(wèn)題:

(1)按照我國(guó)《機(jī)動(dòng)車(chē)交通事故責(zé)任強(qiáng)制保險(xiǎn)條例》汽車(chē)交強(qiáng)險(xiǎn)價(jià)格的規(guī)定,,記為某同學(xué)家的一輛該品牌車(chē)在第四年續(xù)保時(shí)的費(fèi)用,求的分布列與數(shù)學(xué)期望;(數(shù)學(xué)期望值保留到個(gè)位數(shù)字)

(2)某二手車(chē)銷(xiāo)售商專(zhuān)門(mén)銷(xiāo)售這一品牌的二手車(chē),且將下一年的交強(qiáng)險(xiǎn)保費(fèi)高于基本保費(fèi)的車(chē)輛記為事故車(chē),假設(shè)購(gòu)進(jìn)一輛事故車(chē)虧損5000元,一輛非事故車(chē)盈利10000元:

①若該銷(xiāo)售商購(gòu)進(jìn)三輛(車(chē)齡已滿三年)該品牌二手車(chē),求這三輛車(chē)中至多有一輛事故車(chē)的概率;

②若該銷(xiāo)售商一次購(gòu)進(jìn)100輛(車(chē)齡已滿三年)該品牌二手車(chē),求他獲得利潤(rùn)的期望值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的右焦點(diǎn),橢圓的左,右頂點(diǎn)分別為.過(guò)點(diǎn)的直線與橢圓交于兩點(diǎn),且的面積是的面積的3倍.

(Ⅰ)求橢圓的方程;

(Ⅱ)若軸垂直,是橢圓上位于直線兩側(cè)的動(dòng)點(diǎn),且滿足,試問(wèn)直線的斜率是否為定值,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】寫(xiě)出下列函數(shù)的單調(diào)區(qū)間.

(1)y=|x+1|; (2)y=-x2+ax;

(3)y=|2x-1|; (4)y=-.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市公租房的房源位于四個(gè)片區(qū),設(shè)每位申請(qǐng)人只申請(qǐng)其中一個(gè)片區(qū)的房源,且申請(qǐng)其中任一個(gè)片區(qū)的房源是等可能的,在該市的甲、乙、丙三位申請(qǐng)人中:

(1)求恰有1人申請(qǐng)片區(qū)房源的概率;

(2)用表示選擇片區(qū)的人數(shù),求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知向量a=(x+z,3),b=(2,y-z),且a⊥b.若x,y滿足不等式|x|+|y|≤1,則z的取值范圍是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿分14分)

如圖,邊長(zhǎng)為4的正方形中,點(diǎn)分別是上的點(diǎn),將折起,使兩點(diǎn)重合于.

(1)求證:;

(2)當(dāng)時(shí),

求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案