對(duì)于數(shù)列,規(guī)定數(shù)列為數(shù)列的一階差分?jǐn)?shù)列,其中;一般地,規(guī)定k階差分?jǐn)?shù)列,其中,且.(I)已知數(shù)列的通項(xiàng)公式。試證明是等差數(shù)列;(II)若數(shù)列的首項(xiàng),且滿足,求數(shù)列的通項(xiàng)公式;

(Ⅰ)   略(Ⅱ)   


解析:

(I)依題意:,

 數(shù)列是首項(xiàng)為1,公差為5的等差數(shù)列.…6分

 (II)由,

,,.…9分

當(dāng)時(shí),

    …14分

當(dāng)n=1時(shí),也滿足上式. …16分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*);類似的,規(guī)定{△2an}為數(shù)列{an}的二階差分?jǐn)?shù)列,其中△2an=△an+1-△an(n∈N*).
(Ⅰ)已知數(shù)列{an}的通項(xiàng)公式an=3n2-5n(n∈N*),試證明{△an}是等差數(shù)列;
(Ⅱ)若數(shù)列{an}的首項(xiàng)a1=1,且滿足△2an-△an+1+an=-2n(n∈N*),令bn=
an
2n
,求數(shù)列{bn}的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,記cn=
a1(n=1)
2n-1
△an
(n≥2,n∈N*
,求證:c1+
c2
2
+…+
cn
n
17
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定{△kan}為數(shù)列{an}的k階差分?jǐn)?shù)列,其中△kan=△k-1an+1-△k-1an,且k∈N*,k≥2.
(Ⅰ)已知數(shù)列{an}的通項(xiàng)公式an=
5
2
n2-
13
2
n(n∈N*),試證明{△an}是等差數(shù)列;
(Ⅱ)若數(shù)列{an}的首項(xiàng)a1=1,且滿足△2an-an+1+an=-2n(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,記bn=
a1(n=1)
2n-1
an
(n≥2,n∈N*)
,求證:b1+
b2
2
+…+
bn
n
17
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

對(duì)于數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定{△kan}為數(shù)列{an}的k階差分?jǐn)?shù)列,其中△kan=△k-1an+1-△k-1an,且k∈N*,k≥2.
(Ⅰ)已知數(shù)列{an}的通項(xiàng)公式an=數(shù)學(xué)公式n2-數(shù)學(xué)公式n(n∈N*),試證明{△an}是等差數(shù)列;
(Ⅱ)若數(shù)列{an}的首項(xiàng)a1=1,且滿足△2an-an+1+an=-2n(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,記bn=數(shù)學(xué)公式,求證:b1+數(shù)學(xué)公式+…+數(shù)學(xué)公式數(shù)學(xué)公式

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省眉山市高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:解答題

對(duì)于數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*);類似的,規(guī)定{△2an}為數(shù)列{an}的二階差分?jǐn)?shù)列,其中△2an=△an+1-△an(n∈N*).
(Ⅰ)已知數(shù)列{an}的通項(xiàng)公式an=3n2-5n(n∈N*),試證明{△an}是等差數(shù)列;
(Ⅱ)若數(shù)列{an}的首項(xiàng)a1=1,且滿足△2an-△an+1+an=-2n(n∈N*),令bn=,求數(shù)列{bn}的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,記cn=,求證:c1++…+

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年四川省眉山市高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

對(duì)于數(shù)列{an},規(guī)定{△an}為數(shù)列{an}的一階差分?jǐn)?shù)列,其中△an=an+1-an(n∈N*);一般地,規(guī)定{△kan}為數(shù)列{an}的k階差分?jǐn)?shù)列,其中△kan=△k-1an+1-△k-1an,且k∈N*,k≥2.
(Ⅰ)已知數(shù)列{an}的通項(xiàng)公式an=n2-n(n∈N*),試證明{△an}是等差數(shù)列;
(Ⅱ)若數(shù)列{an}的首項(xiàng)a1=1,且滿足△2an-an+1+an=-2n(n∈N*),求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)在(Ⅱ)的條件下,記bn=,求證:b1++…+

查看答案和解析>>

同步練習(xí)冊(cè)答案