試做一個(gè)上端開(kāi)口的圓柱形容器,它的凈容積為V,壁厚為a(包括側(cè)壁和底部),其中V和a均為常數(shù).問(wèn)容器內(nèi)壁半徑為多少時(shí),所用的材料最少?
考點(diǎn):導(dǎo)數(shù)在最大值、最小值問(wèn)題中的應(yīng)用
專(zhuān)題:導(dǎo)數(shù)的概念及應(yīng)用
分析:設(shè)容器內(nèi)壁的半徑為x(x>0),容器的高為h,構(gòu)造函數(shù)f(x)=π(x+a)2a+π(x+a)2h-V.利用導(dǎo)數(shù)確定函數(shù)的最值,從而求出容器內(nèi)壁半徑為
3
V
π
時(shí),所用的材料最少.
解答: 解:設(shè)容器內(nèi)壁的半徑為x(x>0),容器的高為h,
則h=
V
πx2

∴所用材料f(x)=底部所用材料=側(cè)壁所用材料
=π(x+a)2a+π(x+a)2h-V.
f′(x)=2πa(x+a)-2aV(
1
x2
+
1
a2
)

=
2aπ(x+a)
x3
(x3-
3
V
π
)
(x2+
3
V
π
x+(
3
V
π
)2)

令f′(x)=0得,x=
3
V
π

∴函數(shù)在x=
3
V
π
處取得最小值.
∴容器內(nèi)壁半徑為
3
V
π
時(shí),所用的材料最少.
點(diǎn)評(píng):本題考查利用導(dǎo)數(shù)求函數(shù)最值,構(gòu)造函數(shù)解決實(shí)際問(wèn)題等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為奇函數(shù),x>0時(shí),f(x)=sin2x+cosx,則x<0時(shí),f(x)為( 。
A、sin2x-cosx
B、sin2x+cosx
C、cosx-sin2x
D、-sin2x-cosx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知θ為實(shí)數(shù),若復(fù)數(shù)z=sin2θ-1+i(
2
cosθ-1)是純虛數(shù),則z的虛部為(  )
A、2B、0C、-2D、-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)y=f(x)的定義域?yàn)镈,值域?yàn)锽,如果存在函數(shù)x=g(t),使得函數(shù)y=f(g(t))的值域仍然是B,那么,稱(chēng)函數(shù)x=g(t)是函數(shù)y=f(x)的一個(gè)Γ變換.
(1)判斷函數(shù)x=t2-2t+3,t∈R是不是f(x)=2x+b,x∈R,的一個(gè)Γ變換?說(shuō)明你的理由;
(2)設(shè)f(x)=log2x的值域B=[1,3],已知x=g(t)=
mt2-3t+n
t2+1
是y=f(x)的一個(gè)Γ變換,且函數(shù)f(g(t))的定義域?yàn)镽,求實(shí)數(shù)m,n的值;
(3)設(shè)函數(shù)y=f(x)的定義域?yàn)镈,值域?yàn)锽,函數(shù)g(t)的定義域?yàn)镈1,值域?yàn)锽1,寫(xiě)出x=g(t)是y=f(x)的一個(gè)Γ變換的充分非必要條件(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了解某校高一學(xué)生的中考數(shù)學(xué)成績(jī),分別從甲乙兩班隨機(jī)各抽取8名學(xué)生的中考數(shù)學(xué)成績(jī),獲得如圖所示的莖葉圖.
(Ⅰ)根據(jù)莖葉圖的數(shù)據(jù)分別求甲、乙兩個(gè)班所抽8名學(xué)生的中考數(shù)學(xué)成績(jī)的中位數(shù)和平均數(shù),并根據(jù)莖葉圖的數(shù)據(jù)特征判斷哪個(gè)班成績(jī)更集中?
(Ⅱ)根據(jù)莖葉圖的數(shù)據(jù)從140分以上的學(xué)生隨機(jī)抽取兩名學(xué)生參加“希望杯”數(shù)學(xué)邀請(qǐng)賽,求至少有一名來(lái)自乙班的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=ax+
4
x

(Ⅰ)從區(qū)間(-2,2)內(nèi)任取一個(gè)實(shí)數(shù)a,設(shè)事件A={函數(shù)y=f(x)-2在區(qū)間(0,+∞)上有兩個(gè)不同的零點(diǎn)},求事件A發(fā)生的概率;
(Ⅱ)若連續(xù)擲兩次骰子(骰子六個(gè)面上標(biāo)注的點(diǎn)數(shù)分別為1,2,3,4,5,6)得到的點(diǎn)數(shù)分別為a和b,記事件B={f(x)>b2在x∈(0,+∞)恒成立},求事件B發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x3-3ax(a∈R)
(1)當(dāng)a=1時(shí),求f(x)的極小值;
(2)若直線x+y+m=0對(duì)任意m∈R的都不是曲線y=f(x)的切線,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

自駕游從A地到B地有甲乙兩條線路,甲線路是A-C-D-B,乙線路是A-E-F-G-H-B,其中CD段、EF段、GH段都是易堵車(chē)路段,假設(shè)這三條路段堵車(chē)與否相互獨(dú)立,這三條路段的堵車(chē)概率及平均堵車(chē)時(shí)間如表1所示.
表1:
  CD段 EF段 GH段
堵車(chē)概率 x y
1
4
平均堵車(chē)時(shí)間
(單位:小時(shí))
a 2 1
經(jīng)調(diào)查發(fā)現(xiàn),堵車(chē)概率x在(
2
3
,1)上變化,y在(0,
1
2
)上變化.
在不堵車(chē)的情況下,走甲線路需汽油費(fèi)500元,走乙線路需汽油費(fèi)545元.而每堵車(chē)1小時(shí),需多花汽油費(fèi)20元.路政局為了估計(jì)CD段平均堵車(chē)時(shí)間,調(diào)查了100名走甲線路的司機(jī),得到表2數(shù)據(jù).
表2:
堵車(chē)時(shí)間(單位:小時(shí)) 頻數(shù)
[0,1] 8
(1,2] 6
(2,3] 38
(3,4] 24
(4,5] 24
(Ⅰ)求CD段平均堵車(chē)時(shí)間a的值;
(Ⅱ)若只考慮所花汽油費(fèi)期望值的大小,為了節(jié)約,求選擇走甲線路的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)△ABC的內(nèi)角A、B、C的對(duì)邊分別為a、b、c,若tanC=
sinA+sinB
cosA+cosB
且c=
3
2
,求△ABC的面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案