【題目】如圖,正三棱柱ABC-A1B1C1的底面邊長(zhǎng)是2,側(cè)棱長(zhǎng)是,D是AC的中點(diǎn)。
(1)求證:B1C∥平面A1BD;
(2)求二面角A1-BD-A的大;
(3)在線段AA1上是否存在一點(diǎn)E,使得平面B1C1E⊥平面A1BD,若存在,求出AE的長(zhǎng);若不存在,說明理由。
【答案】(1)見解析;(2);(3)
【解析】試題分析:(1)連結(jié)AB1交A1B于M,連結(jié)B1C,DM,由已知條件得四邊形AA1B1B是矩形,由三角形中位線能證明B1C∥平面A1BD.(2)作CO⊥AB于O,建立空間直角坐標(biāo)系O-xyz.利用向量法能求出二面角A1-BD-A的大小.(3)設(shè)E(1,x,0),求出平面B1C1E的法向量,利用向量法能求出存在點(diǎn)E,使得平面B1C1E⊥平面A1BD,且AE=
試題解析:
(1)連結(jié)AB1交A1B于M,連結(jié)DM,
因?yàn)槿庵?/span>ABC-A1B1C1是正三棱柱,
所以四邊形AA1B1B是矩形,所以M為AB1的中點(diǎn)。
因?yàn)?/span>D是AC的中點(diǎn),所以MD是三角形AB1C的中位線,
所以MD∥B1C。
因?yàn)?/span>MD平面A1BD,B1C平面A1BD,所以B1C∥平面A1BD。
(2)作CO⊥AB于O,所以CO⊥平面ABB1A1,
所以在正三棱柱ABC-A1B1C1中如圖建立空間直角坐標(biāo)系O-xyz。
因?yàn)?/span>AB=2,AA1=,D是AC的中點(diǎn)。
所以A(1,0,0),B(-l,0,0),C(0,0, ),A1(1, ,0),
所以D(,0, ),=(,0, ),=(2, ,0)。
設(shè)n=(x,y,z)是平面A1BD的法向量,
所以即,令x=-,則y=2,z=3,
所以n=(-,2,3)是平面A1BD的一個(gè)法向量。
由題意可知=(0, ,0)是平面ABD的一個(gè)法向量,
所以cos<n, >==。
由題知二面角A1-BD-A為銳角,所以它的大小為。
(3)設(shè)E(1,x,0),則=(1,x-,-),=(-1,0,-),
設(shè)平面B1C1E的法向量m=(x1,y1,z1),
所以即令z1=-,則x1=3,y1=,
m=(3, ,-),又m·n=0,即-3+-3=0,解得x=,
所以存在點(diǎn)E,使得平面B1C1E⊥平面A1BD且AE=。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)圓柱形圓木的底面半徑為1 m,長(zhǎng)為10 m,將此圓木沿軸所在的平面剖成兩部分.現(xiàn)要把其中一部分加工成直四棱柱木梁,長(zhǎng)度保持不變,底面為等腰梯形ABCD(如圖所示,其中O為圓心,C,D在半圓上),設(shè),木梁的體積為V(單位:m3),表面積為S(單位:m2).
(1)求V關(guān)于θ的函數(shù)表達(dá)式;
(2)求的值,使體積V最大;
(3)問當(dāng)木梁的體積V最大時(shí),其表面積S是否也最大?請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知三棱臺(tái)ABC﹣A1B1C1中,平面BB1C1C⊥平面ABC,∠ACB=90°,BB1=CC1=B1C1=2,BC=4,AC=6
(1)求證:BC1⊥平面AA1C1C
(2)點(diǎn)D是B1C1的中點(diǎn),求二面角A1﹣BD﹣B1的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四面體中,平面,,,.是的中點(diǎn),是的中點(diǎn),點(diǎn)在線段上,且.
(1)證明:平面;
(2)若二面角的大小為60°,求∠BDC的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】生于瑞士的數(shù)學(xué)巨星歐拉在1765年發(fā)表的《三角形的幾何學(xué)》一書中有這樣一個(gè)定理:“三角形的外心、垂心和重心都在同一直線上!边@就是著名的歐拉線定理,在中,分別是外心、垂心和重心,為邊的中點(diǎn),下列四個(gè)結(jié)論:(1);(2);(3);(4)正確的個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等差數(shù)列和等比數(shù)列滿足, , .
(1)求的通項(xiàng)公式;
(2)求和: .
【答案】(1);(2).
【解析】試題分析:(1)根據(jù)等差數(shù)列的, ,列出關(guān)于首項(xiàng)、公差的方程組,解方程組可得與的值,從而可得數(shù)列的通項(xiàng)公式;(2)利用已知條件根據(jù)題意列出關(guān)于首項(xiàng) ,公比 的方程組,解得、的值,求出數(shù)列的通項(xiàng)公式,然后利用等比數(shù)列求和公式求解即可.
試題解析:(1)設(shè)等差數(shù)列{an}的公差為d. 因?yàn)?/span>a2+a4=10,所以2a1+4d=10.解得d=2.
所以an=2n1.
(2)設(shè)等比數(shù)列的公比為q. 因?yàn)?/span>b2b4=a5,所以b1qb1q3=9.
解得q2=3.所以.
從而.
【題型】解答題
【結(jié)束】
18
【題目】已知命題:實(shí)數(shù)滿足,其中;命題:方程表示雙曲線.
(1)若,且為真,求實(shí)數(shù)的取值范圍;
(2)若是的充分不必要條件,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“”是“對(duì)任意的正數(shù), ”的( )
A. 充分不必要條件 B. 必要不充分條件 C. 充要條件 D. 既不充分也不必要條件
【答案】A
【解析】分析:根據(jù)基本不等式,我們可以判斷出“”?“對(duì)任意的正數(shù)x,2x+≥1”與“對(duì)任意的正數(shù)x,2x+≥1”?“a=
”真假,進(jìn)而根據(jù)充要條件的定義,即可得到結(jié)論.
解答:解:當(dāng)“a=”時(shí),由基本不等式可得:
“對(duì)任意的正數(shù)x,2x+≥1”一定成立,
即“a=”?“對(duì)任意的正數(shù)x,2x+≥1”為真命題;
而“對(duì)任意的正數(shù)x,2x+≥1的”時(shí),可得“a≥”
即“對(duì)任意的正數(shù)x,2x+≥1”?“a=”為假命題;
故“a=”是“對(duì)任意的正數(shù)x,2x+≥1的”充分不必要條件
故選A
【題型】單選題
【結(jié)束】
9
【題目】如圖是一幾何體的平面展開圖,其中為正方形, , 分別為, 的中點(diǎn),在此幾何體中,給出下面四個(gè)結(jié)論:①直線與直線異面;②直線與直線異面;③直線平面;④平面平面.
其中一定正確的選項(xiàng)是( )
A. ①③ B. ②③ C. ②③④ D. ①③④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com