【題目】如圖,在直三棱柱中,底面是等腰直角三角形, ,側棱,D、E分別是與的中點,點E在平面ABD上的射影是的重心
(Ⅰ)求與平面ABD所成角的余弦值
(Ⅱ)求點到平面的距離
科目:高中數(shù)學 來源: 題型:
【題目】下列說法正確的是( )
A.命題“若x2>1,則x>1”的否命題為“若x2>1,則”
B.命題“?,x>1”的否定是“,x2>1”
C.命題“若x=y,則cosx=cosy"的逆否命題為假命題
D.命題“若x=y,則cosx=cosy"的逆命題為假命題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的函數(shù)f(x)=2x-.
(Ⅰ)若f(x)=,求x的值;
(Ⅱ)若2tf(2t)+mf(t)≥0對于t∈[1,2]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某廠用鮮牛奶在某臺設備上生產(chǎn)A,B兩種奶制品.生產(chǎn)1噸A產(chǎn)品需鮮牛奶2噸,使用設備1小時,獲利1 000元;生產(chǎn)1噸B產(chǎn)品需鮮牛奶1.5噸,使用設備1.5小時,獲利1 200元.要求每天B產(chǎn)品的產(chǎn)量不超過A產(chǎn)品產(chǎn)量的2倍,設備每天生產(chǎn)A,B兩種產(chǎn)品時間之和不超過12小時.假定每天可獲取的鮮牛奶數(shù)量W(單位:噸)是一個隨機變量,其分布列為
W | 12 | 15 | 18 |
P | 0.3 | 0.5 | 0.2 |
該廠每天根據(jù)獲取的鮮牛奶數(shù)量安排生產(chǎn),使其獲利最大,因此每天的最大獲利Z(單位:元)是一個隨機變量.
(I)求Z的分布列和均值;
(II)若每天可獲取的鮮牛奶數(shù)量相互獨立,求3天中至少有1天的最大獲利超過10 000元的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】圓O1和圓O2的極坐標方程分別為ρ=4cosθ,ρ=-4sinθ
(1)把圓O1和圓O2的極坐標方程化為直角坐標方程;
(2)求經(jīng)過圓O1、圓O2交點的直線的直角坐標方程
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐,底面為菱形,,, 平面, 分別是的中點。
(1)證明: ;
(2)若為的中點時,與平面所成的角最大,且所成角的正切值為,求點A到平面的距離。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在極坐標系中,已知曲線 與 ,求:
(1)兩曲線(含直線)的公共點 P 的極坐標
(2)過點 P ,被曲線 截得的弦長為 的直線的極坐標方程
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知的外接圓半徑,角A、B、C的對邊分別是a、b、c,且.
(I)求角B和邊長b;
(II)求面積的最大值及取得最大值時的a、c的值,并判斷此時三角形的形狀.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xoy中,直線l的參數(shù)方程為 (t為參數(shù)).在以原點O為極點,x軸正半軸為極軸的極坐標系中,圓C的方程為ρ=4cosθ.
(1)寫出直線l的普通方程和圓C的直角坐標方程.
(2)若點P坐標為(1,1),圓C與直線l交于A,B兩點,求|PA|+|PB|的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com