設△ABC的內(nèi)角A,B,C所對邊的長分別為a,b,c,且有2sinBcosA=sinAcosC+cosAsinC.
(Ⅰ)求角A的大;
(Ⅱ)若a=2
3
,b+c=4,求△ABC的面積.
考點:余弦定理,三角函數(shù)中的恒等變換應用
專題:三角函數(shù)的求值
分析:(Ⅰ)已知等式右邊利用兩角和與差的正弦函數(shù)公式化簡,整理求出cosA,即可確定出角A的大;
(Ⅱ)利用余弦定理列出關系式,變形后將cosA,b+c的值代入求出bc的值,再由sinA的值,利用三角形面積公式即可求出三角形ABC面積.
解答: 解:(Ⅰ)∵2sinBcosA=sinAcosC+cosAsinC=sin(A+C)=sinB,且sinB≠0,
∴2cosA=1,即cosA=
1
2
,
∵A為三角形內(nèi)角,
∴A=
π
3

(Ⅱ)∵A=
π
3
,b+c=4,
∴由余弦定理得:a2=b2+c2-2bccosA=b2+c2-bc=(b+c)2-3bc,即12=16-3bc,
∴bc=
4
3

則S△ABC=
1
2
bcsinA=
1
2
×
4
3
×
3
2
=
3
3
點評:此題考查了正弦、余弦定理,以及三角形面積公式,熟練掌握定理是解本題的關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

現(xiàn)有1位教師,2位男同學,3位女同學共6人站成一排,要求2位男同學站兩邊,3位女同學中有且僅有兩位相鄰,則不同排法有( 。
A、12種B、24種
C、36種D、72種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某幾何體的三視圖如圖所示,則該幾何體的表面積為(  )
A、20πB、16π
C、12πD、10π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0),A,F(xiàn)分別為橢圓C的左頂點和右焦點,過F的直線l交橢圓C于點P,Q.若AF=3,且當直線l⊥x軸時,PQ=3.
(1)求橢圓C的方程;
(2)設直線AP,AQ的斜率分別為k1,k2,問k1k2是否為定值?并證明你的結論;
(3)記△APQ的面積為S,求S的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,設角A,B,C的對邊分別為a,b,c,向量
m
=(cosA,sinA),
n
=(
2
-sinA,cosA),若
m
n
=1.
(1)求角A的大小;
(2)若b=4
2
,且c=
2
a,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A、B、C的對邊分別為a、b、c,且a2+c2-b2=
2
3
3
acsinB.
(1)求角B的大小;
(2)若b=
3
,且A∈(
π
6
,
π
2
),求邊長c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,AB,CD為圓O的兩條直徑,P為圓O所在平面外的一點,且PA=PB=PC
(Ⅰ)求證:平面PAB⊥圓O所在平面;
(Ⅱ)若AP⊥BP,∠BAC=
π
6
,求二面角A-PB-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,角A,B,C所對的邊分別為a,b,c,已知cosC+(cosA-
3
sinA)cosB=0.
(1)求角B的大小;
(2)又若b=
3
,求△ABC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示的算法框圖,輸出的結果為
 

查看答案和解析>>

同步練習冊答案