已知隨即變量X的概率分布為:
X 0 1 2 3
P 0.2 0.1 a 0.3
且隨即變量X,Y之間滿足Y=kX+3,若P(Y=7)=0.4,則實數(shù)k=
 
考點:離散型隨機(jī)變量及其分布列
專題:常規(guī)題型,概率與統(tǒng)計
分析:首先根據(jù)分布列求出a,然后根據(jù)P(Y=7)=0.4,Y=7的概率就是X=2時的概率.
解答: 解:根據(jù)分布列得,0.2+0.1+a+0.3=1
解得a=0.4,
由P(Y=7)=0.4,
得Y=k×2+3=7
解得k=2.
故答案為:2.
點評:本題考查了分布列的性質(zhì),關(guān)鍵是要理解隨機(jī)變量Y的概率與隨機(jī)變量X的概率之間的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若(x3+
1
x2
n展開式中第6項的系數(shù)最大,則不含x的項等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算機(jī)執(zhí)行如圖所示的算法程序,如果輸入的z∈[0,3],則輸出的y值的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1-x 2
-x-m有零點,則m的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x-ln(x+1)-1,函數(shù)零點的個數(shù)是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,不等式
x+y-4≤0
x-y+a≥0
x≥0
y≥0
(a為常數(shù)且0<a<4)表示的平面區(qū)域的面積為7,則3x-2y的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)z=
i
1+i
(i是虛數(shù)單位)的虛部為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

不等式組
x+y-3≥0
x-y+1≥0
x≤2
表示的平面區(qū)域的面積是( 。
A、0.25B、0.5C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知全集U=R,集合A={x|y=ln(3x-1)},B={y|y=sin(x+2)},則(∁UA)∩B=( 。
A、(
1
3
,+∞)
B、(0,
1
3
]
C、[-1,
1
3
]
D、∅

查看答案和解析>>

同步練習(xí)冊答案