【題目】如圖,在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,a=b(sinC+cosC).
(Ⅰ)求∠ABC;
(Ⅱ)若∠A= ,D為△ABC外一點(diǎn),DB=2,DC=1,求四邊形ABDC面積的最大值.
【答案】解:(Ⅰ)在△ABC中,∵a=b(sinC+cosC), ∴sinA=sinB(sinC+cosC),
∴sin(π﹣B﹣C)=sinB(sinC+cosC),
∴sin(B+C)=sinB(sinC+cosC),
∴sinBcosC+cosBsinC=sinBsinC+sinBcosC,
∴cosBsinC=sinBsinC,
又∵C∈(0,π),故sinC≠0,
∴cosB=sinB,即tanB=1.
又∵B∈(0,π),
∴ .
(Ⅱ)在△BCD中,DB=2,DC=1,
∴BC2=12+22﹣2×1×2×cosD=5﹣4cosD.
又 ,由(Ⅰ)可知 ,
∴△ABC為等腰直角三角形,
∴ ,
又∵ ,
∴ .
∴當(dāng) 時(shí),四邊形ABDC的面積有最大值,最大值為 .
【解析】(Ⅰ)利用正弦定理,三角函數(shù)恒等變換的應(yīng)用化簡(jiǎn)已知可得cosBsinC=sinBsinC,結(jié)合sinC≠0,可求tanB=1,結(jié)合范圍B∈(0,π),即可求得B的值.(Ⅱ)由已知利用余弦定理可得BC2=12+22﹣2×1×2×cosD=5﹣4cosD,由已知及(Ⅰ)可知 ,利用三角形面積公式可求S△ABC , S△BDC , 從而可求 ,根據(jù)正弦函數(shù)的性質(zhì)即可得解四邊形ABDC面積的最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形PDCE為矩形,四邊形ABCD為梯形,平面PDCE⊥平面ABCD,∠BAD=∠ADC=90°,AB=AD= CD=1.
(1)若M為PA中點(diǎn),求證:AC∥平面MDE;
(2)若平面PAD與PBC所成的銳二面角的大小為 ,求線段PD的長(zhǎng)度.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:向量 =( ,0),O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)M滿足:| + |+| ﹣ |=4.
(1)求動(dòng)點(diǎn)M的軌跡C的方程;
(2)已知直線l1 , l2都過(guò)點(diǎn)B(0,1),且l1⊥l2 , l1 , l2與軌跡C分別交于點(diǎn)D,E,試探究是否存在這樣的直線使得△BDE是等腰直角三角形.若存在,指出這樣的直線共有幾組(無(wú)需求出直線的方程);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】公元263年左右,我國(guó)數(shù)學(xué)家劉徽發(fā)現(xiàn),當(dāng)圓內(nèi)接多邊形的邊數(shù)無(wú)限增加時(shí),多邊形面積可無(wú)限逼近圓的面積,由此創(chuàng)立了割圓術(shù),利用割圓術(shù)劉徽得到了圓周率精確到小數(shù)點(diǎn)后面兩位的近似值3.14,這就是著名的徽率.如圖是利用劉徽的割圓術(shù)設(shè)計(jì)的程序框圖,則輸出的n值為( ) 參考數(shù)據(jù): ,sin15°≈0.2588,sin7.5°≈0.1305.
A.12
B.24
C.48
D.96
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,曲線C1的參數(shù)方程為 (t為參數(shù)),以原點(diǎn)O為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程為ρ2=4 ρsin(θ+ )﹣4.
(Ⅰ)求曲線C2的直角坐標(biāo)方程,并指出其表示何種曲線;
(Ⅱ)若曲線C1與曲線C2交于A、B兩點(diǎn),求|AB|的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2﹣ax+ln(x+1)(a∈R).
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的極值點(diǎn);
(2)若函數(shù)f(x)在區(qū)間(0,1)上恒有f′(x)>x,求實(shí)數(shù)a的取值范圍;
(3)已知c1>0,且cn+1=f′(cn)(n=1,2,…),在(2)的條件下,證明數(shù)列{cn}是單調(diào)遞增數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】工人在懸掛如圖所示的一個(gè)正六邊形裝飾品時(shí),需要固定六個(gè)位置上的螺絲,首先隨意擰緊一個(gè)螺絲,接著擰緊距離它最遠(yuǎn)的第二個(gè)螺絲,再隨意擰緊第三個(gè)螺絲,接著擰緊距離第三個(gè)螺絲最遠(yuǎn)的第四個(gè)螺絲,第五個(gè)和第六個(gè)以此類推,則不同的固定方式有種.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前 n 項(xiàng)和為 Sn , a1=1,且 an+1=2Sn+1,n∈N .
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令 c=log3a2n , bn= ,記數(shù)列{bn}的前 n 項(xiàng)和為Tn , 若對(duì)任意 n∈N , λ<Tn 恒成立,求實(shí)數(shù) λ 的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com