函數(shù)y=sinx-cosx+sinxcosx,x∈[0,π]的值域是
 
考點(diǎn):三角函數(shù)的最值
專題:三角函數(shù)的求值
分析:設(shè)sinx-cosx=t,得sinxcosx=
1-t2
2
,依題意易求t∈[-1,
2
],可得y=-
1
2
t2+t+
1
2
=-
1
2
(t-1)2+1,從而可得答案.
解答: 解:設(shè)sinx-cosx=t,則(sinx-cosx)2=t2⇒sinxcosx=
1-t2
2
,
∵x∈[0,π],
∴(x-
π
4
)∈[-
π
4
,
4
],sin(x-
π
4
)∈[-
2
2
,1],
∴t=sinx-cosx=
2
sin(x-
π
4
)∈[-1,
2
],
∴y=-
1
2
t2+t+
1
2
=-
1
2
(t-1)2+1,
∴當(dāng)t=1時(shí),ymax=1;
當(dāng)t=-1時(shí),ymin=-1.
∴函數(shù)y=sinx-cosx+sinxcosx,x∈[0,π]的值域是[-1,1].
故答案為:[-1,1].
點(diǎn)評(píng):本題考查三角函數(shù)的最值,換元是關(guān)鍵,考查等價(jià)轉(zhuǎn)化思想與運(yùn)算求解能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點(diǎn).
(1)證明:PF⊥FD;
(2)在線段PA上是否存在點(diǎn)G,使得EG∥平面PFD,若存在,確定點(diǎn)G的位置;若不存在,說明理由;
(3)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知曲線C上的動(dòng)點(diǎn)P(x,y)滿足到點(diǎn)F(0,1)的距離比到直線l:y=-2的距離小1.
(1)求曲線C的方程;
(2)動(dòng)點(diǎn)E在直線l上,過點(diǎn)E分別作曲線C的切線EA、EB,切點(diǎn)為A、B.
(i)求證:直線AB恒過一定點(diǎn),并求出該定點(diǎn)的坐標(biāo);
(ii)在直線l上是否存在一點(diǎn)E,使得△ABM為等邊三角形(M是線段AB的中垂線與直線l的交點(diǎn))?若存在,求出點(diǎn)E的坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點(diǎn)M(x,y)為拋物線y2=4x上的動(dòng)點(diǎn),A(a,0)為定點(diǎn),求|MA|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線y2=-ax的準(zhǔn)線方程為x=-2,則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,∠A=60°,點(diǎn)D在邊AC上,DB=
3
,且
BD
=λ(
BA
|
BA
|sinA
+
BC
|
BC
|sinC
)(λ>0),則AC+AB的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各式的值為
1
4
的是
 
.(填序號(hào))
①2cos2 
π
12
-1  ②1-2sin275°   ③
2tan22.5°
1-tan222.5°
 ④sin 15°cos 15°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若拋物線y2=x上存在兩點(diǎn)關(guān)于直線y=m(x-3)對(duì)稱,則m的范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若雙曲線
x2
9
-
y2
k
=1與橢圓
x2
15
+
y2
k
=1有相同的焦點(diǎn),則k的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案