A. | $\frac{{\sqrt{6}}}{5}$ | B. | $\frac{{\sqrt{6}}}{4}$ | C. | $\frac{{\sqrt{6}}}{3}$ | D. | $\frac{{\sqrt{6}}}{6}$ |
分析 由AC∥A1C1,知∠C1A1B是異面直線A1B與AC所成角(或所成角的補角),由此能求出異面直線A1B與AC所成角的余弦值.
解答 解:連結(jié)BC1,∵AC∥A1C1,
∴∠C1A1B是異面直線A1B與AC所成角(或所成角的補角),
∵在直三棱柱ABC-A1B1C1中,∠ACB=90°,AA1=2,AC=BC=1,
∴AB=$\sqrt{1+1}=\sqrt{2}$,${A}_{1}B=\sqrt{4+2}=\sqrt{6}$,BC1=$\sqrt{4+1}$=$\sqrt{5}$,A1C1=1,
∴cos∠C1A1B=$\frac{{A}_{1}{{C}_{1}}^{2}+{A}_{1}{B}^{2}-B{{C}_{1}}^{2}}{2×{A}_{1}{C}_{1}×{A}_{1}B}$=$\frac{1+6-5}{2×1×\sqrt{6}}$=$\frac{\sqrt{6}}{6}$,
∴異面直線A1B與AC所成角的余弦值為$\frac{\sqrt{6}}{6}$.
故選:D.
點評 本題考查異面直線所成角的求法,是基礎(chǔ)題,解題時要認真審題,注意空間思維能力的培養(yǎng).
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | tanB•tanA=2B | B. | tanA=2tanB | C. | tanB=2tanA | D. | tanA+tanB=2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com