設(shè)是夾角為的異面直線,則滿足條件“,,且”的平面(    )
A.不存在 B.有且只有一對
C.有且只有兩對D.有無數(shù)對
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分)如圖:
在棱長為1的正方體中.
點(diǎn)M是棱的中點(diǎn),點(diǎn)的中點(diǎn).
(1)求證:垂直于平面;
(2)求平面與平面所成二面角的平面角(銳角)
的余弦值. 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分12分)如圖,在直三棱柱ABC—A1B1C1中,∠ACB=90°.BC=CC1=a,AC=2a
(I)求證:AB1⊥BC1;
(II)求二面角B—AB1—C的大小;
(III)求點(diǎn)A1到平面AB1C的距離.


 
 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
如圖,在直四棱柱ABCD-ABCD中,底面ABCD為等腰梯形,AB//CD,AB="4," BC="CD=2, "
AA="2, " E、E分別是棱AD、AA的中點(diǎn).   
(1)設(shè)F是棱AB的中點(diǎn),證明:直線EE//平面FCC;
(2)證明:平面D1AC⊥平面BB1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分14分).如圖,圓錐的軸截面SAB為等腰直角三角形,Q為底面圓周上的一點(diǎn),如果QB的中點(diǎn)為C,OH⊥SC,垂足為H。
求證:BQ⊥平面SOC,
求證:OH⊥平面SBQ;設(shè),,求此圓錐的體積。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
已知等腰直角三角形,其中∠=90º,.點(diǎn)、分別是、的中點(diǎn),現(xiàn)將△沿著邊折起到△位置,使,連結(jié)、
(Ⅰ)求證:;
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

在一個棱長為的正四面體內(nèi)有一點(diǎn)P,它到三個面的距離分別是1cm,2cm,3cm,則它到第四個面的距離為_______________cm .   

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)是三個不重合的平面,是不重合的直線,下列判斷正確的是( )     
A.若B.若
C.若D.若[

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖所示,四個正方體圖形中,為正方形的兩個頂點(diǎn),分別為其所在棱的中點(diǎn),能得出的圖形的序號是           .(寫出所有符合要求的圖形序號)

查看答案和解析>>

同步練習(xí)冊答案