【題目】已知數(shù)列.如果數(shù)列滿足, ,其中,則稱為的“陪伴數(shù)列”.
(Ⅰ)寫出數(shù)列的“陪伴數(shù)列”;
(Ⅱ)若的“陪伴數(shù)列”是.試證明: 成等差數(shù)列.
(Ⅲ)若為偶數(shù),且的“陪伴數(shù)列”是,證明: .
【答案】(1)見解析;(2)見解析;(3)見解析.
【解析】試題分析:(Ⅰ)由“陪伴數(shù)列”的定義易得: .
(Ⅱ)證明:對(duì)于數(shù)列及其“陪伴數(shù)列”,
因?yàn)?,
,
,
……
,
將上述幾個(gè)等式中的第這4個(gè)式子都乘以,相加得即可證明.
(Ⅲ)證明: 因?yàn)?,
,
,
……
,
由于為偶數(shù),將上述個(gè)等式中的第這個(gè)式子都乘以,相加即可證明
試題解析:(Ⅰ)解: .
(Ⅱ)證明:對(duì)于數(shù)列及其“陪伴數(shù)列”,
因?yàn)?,
,
,
……
,
將上述幾個(gè)等式中的第這4個(gè)式子都乘以,
相加得
即
故
所以成等差數(shù)列.
(Ⅲ)證明: 因?yàn)?,
,
,
……
,
由于為偶數(shù),將上述個(gè)等式中的第這個(gè)式子都乘以,相加得
即, .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸,建立極坐標(biāo)系,曲線的極坐標(biāo)方程.
(1)求直線的普通方程及曲線的直角坐標(biāo)方程;
(2)設(shè)曲線與軸的兩個(gè)交點(diǎn)分別為,與軸正半軸的交點(diǎn)為,求直線將分成的兩部分的面積比.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】小華與另外名同學(xué)進(jìn)行“手心手背”游戲,規(guī)則是:人同時(shí)隨機(jī)選擇手心或手背其中一種手勢(shì),規(guī)定相同手勢(shì)人數(shù)更多者每人得分,其余每人得分.現(xiàn)人共進(jìn)行了次游戲,記小華次游戲得分之和為,則為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓()的離心率為,圓與軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),試判斷是否為定值?若為定值,求出該定值;若不是定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】南康某服裝廠擬在年舉行促銷活動(dòng),經(jīng)調(diào)查測(cè)算,該產(chǎn)品的年銷售量(即該廠的年產(chǎn)量)萬(wàn)件與年促銷費(fèi)用萬(wàn)元滿足.已知年生產(chǎn)該產(chǎn)品的固定投入為萬(wàn)元,每生產(chǎn)萬(wàn)件該產(chǎn)品需要再投入萬(wàn)元.廠家將每件產(chǎn)品的銷售價(jià)格定為每件產(chǎn)品年平均成本的倍(產(chǎn)品成本包括固定投入和再投入兩部分資金,不包括促銷費(fèi)用).
(1)將年該產(chǎn)品的利潤(rùn)萬(wàn)元表示為年促銷費(fèi)用萬(wàn)元的函數(shù);
(2)該服裝廠年的促銷費(fèi)用投入多少萬(wàn)元時(shí),利潤(rùn)最大?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,,,.
(1)求證:數(shù)列是等比數(shù)列;
(2)設(shè)數(shù)列的前項(xiàng)和為,,點(diǎn)在直線上,若不等式對(duì)于恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】四棱錐中,底面是邊長(zhǎng)為2的菱形,,為的中點(diǎn),平面,與平面所成的角的正弦值為.
(1)在棱上求一點(diǎn),使平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在三棱錐中,△ABC是等邊三角形,AB⊥AD,CB⊥CD,點(diǎn)P是AC的中點(diǎn),記△BPD、△ABD的面積分別為,,二面角A-BD-C的大小為,
證明:(Ⅰ)平面ACD平面BDP;
(Ⅱ).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com