已知函數(shù)f(x)=
x2+2x+a,x<0
lnx,x>0
,其中a是實數(shù).設(shè)A(x1,f(x1)),B(x2,f(x2))為該函數(shù)圖象上的兩點,且x1<x2,若函數(shù)f(x)的圖象在點A,B處的切線重合,則a的取值范圍是
 
考點:利用導(dǎo)數(shù)研究曲線上某點切線方程
專題:綜合題,導(dǎo)數(shù)的綜合應(yīng)用
分析:先根據(jù)導(dǎo)數(shù)的幾何意義寫出函數(shù)f(x)在點A、B處的切線方程,再利用兩直線重合的充要條件列出關(guān)系式,從而得出a=lnx2+(
1
2x2
-1)2-1,最后利用導(dǎo)數(shù)研究它的單調(diào)性和最值,即可得出a的取值范圍.
解答: 解:當(dāng)x1<x2<0,或0<x1<x2時,f′(x1)≠f′(x2),故x1<0<x2
當(dāng)x1<0時,函數(shù)f(x)在點A(x1,f(x1))處的切線方程為y-(x12+2x1+a)=(2x1+2)(x-x1);
當(dāng)x2>0時,函數(shù)f(x)在點B(x2,f(x2))處的切線方程為y-lnx2=
1
x2
(x-x2);
兩直線重合的充要條件是
1
x2
=2x1+2①,lnx2-1=-x12+a②,
由①及x1<0<x2得0<
1
x2
<2,由①②得a=lnx2+(
1
2x2
-1)2-1=-ln
1
x2
+
1
4
1
x2
-2)2-1,
令t=
1
x2
,則0<t<2,且a=
1
4
t2-t-lnt,設(shè)h(t)=
1
4
t2-t-lnt,(0<t<2)
則h′(t)=
1
2
t-1-
1
t
=
(t-1)2-3
2t
<0,∴h(t)在(0,2)為減函數(shù),
則h(t)>h(2)=-ln2-1,∴a>-ln2-1,
∴若函數(shù)f(x)的圖象在點A,B處的切線重合,a的取值范圍(-ln2-1,+∞).
故答案為:(-ln2-1,+∞).
點評:本題主要考查了導(dǎo)數(shù)的幾何意義等基礎(chǔ)知識,考查了推理論證能力、運算能力、創(chuàng)新意識,考查了函數(shù)與方程、分類與整合、轉(zhuǎn)化與化歸等思想方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=cos2x-
3
sin2x,x∈R.
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)設(shè)θ∈(
π
3
12
),且f(θ)=-
4
3
,求cos2θ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
x-2
-
1
3x-x2
的定義域是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)等差數(shù)列{an}的前n項和為l,公比是正數(shù)的等比數(shù)列{bn}的前n項和為Tn,已知a1=1,b1=3,a3+b3=17,T3-S3=12,求{an},{bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一同學(xué)在電腦中打出如下若干個圈,○●○○●○○○●○○○○●○○○○○●…若將此若干個圈依此規(guī)律繼續(xù)下去,得到一系列的圈,那么在前2014個圈中有
 
個●.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2x,等比數(shù)列{an}的公比為2,若f(a2•a4…a10)=25,則a1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在正項等比數(shù)列{an}中,3a1,
1
2
a3,2a2成等差數(shù)列,則
a2013+a2014
a2011+a2012
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=
1
x
,則
lim
△x→0
f(4+△x)-f(4)
△x
的值等于
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex+x-m在(1,2)內(nèi)有零點,g(x)=ln(x-m)在(4,6)內(nèi)有零點,若m為整數(shù),則m的值為
 

查看答案和解析>>

同步練習(xí)冊答案