已知數(shù)列{an},a1=2a+1(a≠-1的常數(shù)),an=2an-1+n2-4n+2(n≥2,n∈N?),數(shù)列{bn}的首項(xiàng),b1=a,bn=an+n2(n≥2,n∈N?).
(1)證明:{bn}從第2項(xiàng)起是以2為公比的等比數(shù)列并求{bn}通項(xiàng)公式;
(2)設(shè)Sn為數(shù)列{bn}的前n項(xiàng)和,且{Sn}是等比數(shù)列,求實(shí)數(shù)a的值;
(3)當(dāng)a>0時(shí),求數(shù)列{an}的最小項(xiàng).
【答案】分析:(1)由題意可得,=(n≥2)及b2=a2+4=4a+4,可證{bn}從第2項(xiàng)起的等比數(shù)列,結(jié)合等比數(shù)列的通項(xiàng)公式可求;
(2)由(1)可求Sn,結(jié)合{Sn}是等比數(shù)列,及等比數(shù)列的特點(diǎn)可求a;
(3)由n≥2時(shí),,可求an=,可得數(shù)列{an}的項(xiàng)為2a+1,4a,8a-1,16a,32a+7,顯然最小項(xiàng)是前三項(xiàng)中的一項(xiàng),結(jié)合a的范圍可求最小項(xiàng).
解答:解:由題意可得,
=(n≥2)
b2=a2+4=4a+4,
∵a≠-1,b2≠0,即{bn}從第2項(xiàng)起是以2為公比的等比數(shù)列
=(a+1)•2n(n≥2)

(2)由(1)求得
∵{Sn}是等比數(shù)列,
∴3a+4=0,即
(3)由已知當(dāng)n≥2時(shí),
∴an=
所以數(shù)列{an}為2a+1,4a,8a-1,16a,32a+7,顯然最小項(xiàng)是前三項(xiàng)中的一項(xiàng).
當(dāng)時(shí),最小項(xiàng)為8a-1; 
當(dāng)時(shí),最小項(xiàng)為4a;
當(dāng)時(shí),最小項(xiàng)為2a+1.
當(dāng)時(shí),最小項(xiàng)為4a或8a-1
當(dāng)時(shí),最小項(xiàng)為4a或2a+1;
點(diǎn)評(píng):本題主要考查了等比數(shù)列的定義在數(shù)列中應(yīng)用,數(shù)列的遞推公式在數(shù)列的通項(xiàng)求解中的應(yīng)用,屬于數(shù)列知識(shí)的綜合應(yīng)用
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足
a1-1
2
+
a2-1
22
+…+
an-1
2n
=n2+n(n∈N*)

(I)求數(shù)列{an}的通項(xiàng)公式;
(II)求數(shù)列{an}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a 1=
2
5
,且對(duì)任意n∈N*,都有
an
an+1
=
4an+2
an+1+2

(1)求證:數(shù)列{
1
an
}為等差數(shù)列,并求{an}的通項(xiàng)公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求證:Tn
4
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a 1=
2
5
,且對(duì)任意n∈N+,都有
an
an+1
=
4an+2
an+1+2

(1)求{an}的通項(xiàng)公式;
(2)令bn=an•an+1,Tn=b1+b2+b3+…+bn,求證:Tn
4
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a n+an+1=
1
2
(n∈N+)
,a 1=-
1
2
,Sn是數(shù)列{an}的前n項(xiàng)和,則S2013=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}:,,,…,,…,其中a是大于零的常數(shù),記{an}的前n項(xiàng)和為Sn,計(jì)算S1,S2,S3的值,由此推出計(jì)算Sn的公式,并用數(shù)學(xué)歸納法加以證明.

查看答案和解析>>

同步練習(xí)冊(cè)答案