【題目】已知函數(shù).
(Ⅰ)若函數(shù)有極值,求實(shí)數(shù)的取值范圍;
(Ⅱ)當(dāng)有兩個(gè)極值點(diǎn)(記為和)時(shí),求證: .
【答案】(Ⅰ) ; (Ⅱ)見解析.
【解析】試題分析:(Ⅰ)由已知得x>0,且有,,由此利用導(dǎo)數(shù)性質(zhì)能求出當(dāng)函數(shù)f(x)存在極值時(shí),實(shí)數(shù)a的取值范圍是a>4.
(Ⅱ)x1,x2是x2+(2-a)x+1=0的兩個(gè)解,從而x1x2=1,欲證原不等式成立,只需證明f(x)-lnx≥f(x)-x+1成立,即證lnx-x+1≤0成立,由此利用構(gòu)造法和導(dǎo)數(shù)性質(zhì)能證.
試題解析:
(Ⅰ)由已知得 ,且有
在方程中,
①當(dāng),即時(shí), 恒成立
此時(shí)在上單調(diào)遞增,∴函數(shù)無極值;
②當(dāng),即時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根:
,
且∵ ,∴
∵當(dāng)或時(shí), ;當(dāng)時(shí),
∴函數(shù)在上單調(diào)遞減
在和上單調(diào)遞增. ∴函數(shù)存在極值
綜上得:當(dāng)函數(shù)存在極值時(shí),實(shí)數(shù)的取值范圍是
(Ⅱ)∵, 是的兩個(gè)極值點(diǎn),故滿足方程
即, 是的兩個(gè)解,∴
∵
而在中,
欲證原不等式成立,只需證明
∵,只需證明成立
即證成立
令,則
當(dāng)時(shí), ,函數(shù)在上單調(diào)遞增;
當(dāng)時(shí), ,函數(shù)在上單調(diào)遞減;
因此,故,即成立得證.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017屆江西省南昌市高三第一次模擬考試數(shù)學(xué)(理)】已知函數(shù)(,是自然對(duì)數(shù)的底數(shù)).
(1)若是上的單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),證明:函數(shù)有最小值,并求函數(shù)最小值的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017屆陜西省西安市鐵一中學(xué)高三上學(xué)期第五次模擬考試數(shù)學(xué)(文)】已知向量,,且函數(shù).
(Ⅰ)當(dāng)函數(shù)在上的最大值為3時(shí),求的值;
(Ⅱ)在(Ⅰ)的條件下,若對(duì)任意的,函數(shù),的圖像與直線有且僅有兩個(gè)不同的交點(diǎn),試確定的值.并求函數(shù)在上的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列三個(gè)結(jié)論:
①小王任意買1張電影票,座號(hào)是3的倍數(shù)的可能性比座號(hào)是5的倍數(shù)的可能性大;
②高一(1)班有女生22人,男生23人,從中任找1人,則找出的女生可能性大于找出男生的可能性;
③擲1枚質(zhì)地均勻的硬幣,正面朝上的可能性與反面朝上的可能性相同.
其中正確結(jié)論的序號(hào)為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2017蘭州高考模擬】.在多面體ABCDEF中,底面ABCD是梯形,四邊形ADEF是正方形,AB∥DC,AB=AD=1,CD=2,AC=EC=。
(1)求證:平面EBC⊥平面EBD;
(2)設(shè)M為線段EC上一點(diǎn),且3EM=EC,試問在線段BC上是否存在一點(diǎn)T,使得MT∥平面BDE,若存在,試指出點(diǎn)T的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=x2-2aln x+(a-2)x,a∈R.
(1)當(dāng)a=1時(shí),求函數(shù)f(x)的圖象在點(diǎn)(1,f(1))處的切線方程.
(2)是否存在實(shí)數(shù)a,對(duì)任意的x1,x2∈(0,+∞)且x1≠x2有>a恒成立?若存在,求出a的取值范圍;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“開門大吉”是中央電視臺(tái)推出的娛樂節(jié)目.選手面對(duì)1~8號(hào)8扇大門,依次按響門上的門鈴,門鈴會(huì)播放一段音樂(將一首經(jīng)典流行歌曲以單音色旋律的方式演繹),選手需正確回答出這首歌
的名字,方可獲得該扇門對(duì)應(yīng)的家庭夢(mèng)想基金.在一次場外調(diào)查中,發(fā)現(xiàn)參賽選手多數(shù)分為兩個(gè)年齡段:20~30;30~40(單位:歲),其猜對(duì)歌曲名稱與否的人數(shù)如圖所示.
(1) 完成下列2×2列聯(lián)表(見答題紙);
(2)判斷是否有90%的把握認(rèn)為猜對(duì)歌曲名稱與否和年齡有關(guān);說明你的理由.(下面的臨界值表供參考)
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
(參考公式: , )
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列各式:
(1);
(2)已知,則;
(3)函數(shù)的圖象與函數(shù)的圖象關(guān)于y軸對(duì)稱;
(4)函數(shù)的定義域是R,則m的取值范圍是;
(5)函數(shù)的遞增區(qū)間為.
正確的有______________________.(把你認(rèn)為正確的序號(hào)全部寫上)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某班有兩個(gè)課外活動(dòng)小組,其中第一小組有足球票6張,排球票4張;第二個(gè)小組有
足球票4張,排球票6張.甲從第一小組的10張票中任抽1張,乙從第二小組的10
張票中任抽1張.
(1)兩人都抽到足球票的概率是多少?
(2)兩人中至少有一人抽到足球票的概率是多少?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com