【題目】如果對于一切的正實數(shù)x、y,不等式 ﹣cos2x≥asinx﹣ 都成立,則實數(shù)a的取值范圍
【答案】[﹣3,3]
【解析】解:由于y>0,則 + ,由于對于一切的正實數(shù)x、y,不等式 ﹣cos2x≥asinx﹣ 都成立,
即 + ≥3≥asinx+cos2x對任意的正實數(shù)x都成立,
故sin2x﹣asinx+2≥0對任意的正實數(shù)x都成立,
令f(t)=t2﹣at+2,t∈[﹣1,1]
若使f(t)=t2﹣at+2≥0在t∈[﹣1,1]時恒成立,
則必有△=a2﹣8≤0或 ,
解得﹣2 ≤a≤2 或﹣3 或2 a≤3
故使sin2x﹣asinx+2≥0對任意的正實數(shù)x都成立的a的范圍是[﹣3,3],
故對于一切的正實數(shù)x、y,不等式 ﹣cos2x≥asinx﹣ 都成立,則實數(shù)a的取值范圍為[﹣3,3],
所以答案是:[﹣3,3]
【考點精析】認真審題,首先需要了解同角三角函數(shù)基本關(guān)系的運用(同角三角函數(shù)的基本關(guān)系:;;(3) 倒數(shù)關(guān)系:).
科目:高中數(shù)學 來源: 題型:
【題目】已知是橢圓的左、右焦點,為坐標原點,點在橢圓上,線段與軸的交點為,且.
(1)求橢圓的標準方程;
(2)圓是以為直徑的圓,直線與圓相切,并與橢圓交于不同的兩點,,當,且滿足時,求的面積的取值范圍.
請考生在第22、23兩題中任選一題作答.注意:只能做所選定的題目.如果多做,則按所做的第一個題目計分.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),并且當x∈(0,+∞)時,f(x)=2x .
(1)求f(log2 )的值;
(2)求f(x)的解析式.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知復數(shù)z1=m+ni(m,n∈R),z=x+yi(x,y∈R),z2=2+4i且 .
(1)若復數(shù)z1對應(yīng)的點M(m,n)在曲線 上運動,求復數(shù)z所對應(yīng)的點P(x,y)的軌跡方程;
(2)將(1)中的軌跡上每一點按向量 方向平移 個單位,得到新的軌跡C,求C的軌跡方程;
(3)過軌跡C上任意一點A(異于頂點)作其切線,交y軸于點B,求證:以線段AB為直徑的圓恒過一定點,并求出此定點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù), ).以原點為極點,以軸正半軸為極軸,與直角坐標系取相同的長度單位,建立極坐標系.設(shè)曲線的極坐標方程為.
(Ⅰ)設(shè)為曲線上任意一點,求的取值范圍;
(Ⅱ)若直線與曲線交于兩點, ,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓: ()的離心率為,以橢圓的四個頂點為頂點的四邊形的面積為8.
(Ⅰ)求橢圓的方程;
(Ⅱ)如圖,斜率為的直線與橢圓交于, 兩點,點在直線的左上方.若,且直線, 分別與軸交于, 點,求線段的長度.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=( )x的圖象與函數(shù)g(x)的圖象關(guān)于直線y=x對稱,令h(x)=g(1﹣|x|),則關(guān)于h(x)有下列命題:
①h(x)的圖象關(guān)于原點對稱;
②h(x)為偶函數(shù);
③h(x)的最小值為0;
④h(x)在(0,1)上為減函數(shù).
其中正確命題的序號為:②③.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù),關(guān)于的不等式的解集為,其中.
(1)求的值;
(2)令,若函數(shù)存在極值點,求實數(shù)的取值范圍,并求出極值點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com