【題目】設(shè)是各項(xiàng)均為非零實(shí)數(shù)的數(shù)列的前n項(xiàng)和,給出如下兩個(gè)命題上:命題p是等差數(shù)列;命題q:等式對(duì)任意恒成立,其中k,b是常數(shù).

1)若pq的充分條件,求k,b的值;

2)對(duì)于(1)中的kb,問(wèn)p是否為q的必要條件,請(qǐng)說(shuō)明理由;

3)若p為真命題,對(duì)于給定的正整數(shù)n和正數(shù)M,數(shù)列滿足條件,試求 的最大值.

【答案】1,,(2)必要條件,理由見(jiàn)解析,(3

【解析】

1)當(dāng)是等差數(shù)列時(shí),利用裂項(xiàng)求和的方法求得等式左邊表達(dá)式的和,化簡(jiǎn)得對(duì)于恒成立,由此求得.

2)當(dāng)時(shí),等式為.利用退作差法,證得數(shù)列為等差數(shù)列,由此證得的必要條件.

3)利用三角換元的方法,將表示三角函數(shù)的形式,結(jié)合柯西不等式和不等式的性質(zhì),求得的最大值.

1)設(shè)的公差為d,則原等式可化為

所以,

對(duì)于恒成立,

所以,.

2)當(dāng),時(shí),假設(shè)pq的必要條件,即

“若①對(duì)于任意的恒成立,則為等差數(shù)列”.

當(dāng)時(shí),顯然成立.

當(dāng)時(shí),若②,

由①﹣②得,,

③.

當(dāng)時(shí),,即、、成等差數(shù)列,

當(dāng)時(shí),④,

.所以為等差數(shù)列,即pq的必要條件.

3)由,可設(shè),所以.

設(shè)的公差為d,則

所以,

所以,

,

所以的最大值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】部分與整體以某種相似的方式呈現(xiàn)稱為分形,一個(gè)數(shù)學(xué)意義上分形的生成是基于一個(gè)不斷迭代的方程式,即一種基于遞歸的反饋系統(tǒng).分形幾何學(xué)不僅讓人們感悟到科學(xué)與藝木的融合,數(shù)學(xué)與藝術(shù)審美的統(tǒng)一,而且還有其深刻的科學(xué)方法論意義.如圖,由波蘭數(shù)學(xué)家謝爾賓斯基1915年提出的謝爾賓斯基三角形就屬于-種分形,具體作法是取一個(gè)實(shí)心三角形,沿三角形的三邊中點(diǎn)連線,將它分成4個(gè)小三角形,去掉中間的那一個(gè)小三角形后,對(duì)其余3個(gè)小三角形重復(fù)上述過(guò)程逐次得到各個(gè)圖形.

若在圖④中隨機(jī)選。c(diǎn),則此點(diǎn)取自陰影部分的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)場(chǎng)規(guī)劃將果樹種在正方形的場(chǎng)地內(nèi).為了保護(hù)果樹不被風(fēng)吹,決定在果樹的周圍種松樹. 在下圖里,你可以看到規(guī)劃種植果樹的列數(shù)(n),果樹數(shù)量及松樹數(shù)量的規(guī)律:

1)按此規(guī)律,n = 5時(shí)果樹數(shù)量及松樹數(shù)量分別為多少;并寫出果樹數(shù)量,及松樹數(shù)量關(guān)于n的表達(dá)式

2)定義: 增加的速度;現(xiàn)農(nóng)場(chǎng)想擴(kuò)大種植面積,問(wèn):哪種樹增加的速度會(huì)更快?并說(shuō)明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:對(duì)于數(shù)列,如果存在常數(shù),使對(duì)任意正整數(shù),總有成立,那么我們稱數(shù)列﹣擺動(dòng)數(shù)列

1)設(shè),,,判斷數(shù)列是否為﹣擺動(dòng)數(shù)列,并說(shuō)明理由;

2)已知﹣擺動(dòng)數(shù)列滿足:,.求常數(shù)的值;

3)設(shè),,且數(shù)列的前項(xiàng)和為.求證:數(shù)列﹣擺動(dòng)數(shù)列,并求出常數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的離心率為,焦距為,斜率為k的直線l與橢圓M有兩個(gè)不同的交點(diǎn)AB

1)求橢圓M的方程;

2)設(shè)P(﹣2,0),直線PA與橢圓M的另一個(gè)交點(diǎn)為C,直線PB與橢圓M的另一個(gè)交點(diǎn)為D,若CD與點(diǎn)共線,求斜率k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)函數(shù)

1)討論fx)的單調(diào)性;

2)求fx)在區(qū)間[2,2]的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某網(wǎng)購(gòu)平臺(tái)為了解某市居民在該平臺(tái)的消費(fèi)情況,從該市使用其平臺(tái)且每周平均消費(fèi)額超過(guò)100元的人員中隨機(jī)抽取了100名,并繪制如圖所示頻率分布直方圖,已知中間三組的人數(shù)可構(gòu)成等差數(shù)列.

(1)求的值;

2)分析人員對(duì)100名調(diào)查對(duì)象的性別進(jìn)行統(tǒng)計(jì)發(fā)現(xiàn),消費(fèi)金額不低于300元的男性有20人,低于300元的男性有25人,根據(jù)統(tǒng)計(jì)數(shù)據(jù)完成下列列聯(lián)表,并判斷是否有的把握認(rèn)為消費(fèi)金額與性別有關(guān)?

(3)分析人員對(duì)抽取對(duì)象每周的消費(fèi)金額與年齡進(jìn)一步分析,發(fā)現(xiàn)他們線性相關(guān),得到回歸方程.已知100名使用者的平均年齡為38歲,試判斷一名年齡為25歲的年輕人每周的平均消費(fèi)金額為多少.(同一組數(shù)據(jù)用該區(qū)間的中點(diǎn)值代替)

列聯(lián)表

男性

女性

合計(jì)

消費(fèi)金額

消費(fèi)金額

合計(jì)

臨界值表:

0.050

0.010

0.001

3.841

6.635

10.828

,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】“二萬(wàn)五千里長(zhǎng)征”是1934年10月到1936年10月中國(guó)工農(nóng)紅軍進(jìn)行的一次戰(zhàn)略轉(zhuǎn)移,是人類歷史上的偉大奇跡,向世界展示了中國(guó)工農(nóng)紅軍的堅(jiān)強(qiáng)意志,在期間發(fā)生了許多可歌可泣的英雄故事.在中國(guó)共產(chǎn)黨建黨周年之際,某中學(xué)組織了“長(zhǎng)征英雄事跡我來(lái)講”活動(dòng),已知該中學(xué)共有高中生名,用分層抽樣的方法從該校高中學(xué)生中抽取一個(gè)容量為的樣本參加活動(dòng),其中高三年級(jí)抽了人,高二年級(jí)抽了人,則該校高一年級(jí)學(xué)生人數(shù)為( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】若給定橢圓和點(diǎn),則稱直線為橢圓C伴隨直線

1)若在橢圓C上,判斷橢圓C與它的伴隨直線的位置關(guān)系(當(dāng)直線與橢圓的交點(diǎn)個(gè)數(shù)為0個(gè)、1個(gè)、2個(gè)時(shí),分別稱直線與橢圓相離、相切、相交),并說(shuō)明理由;

2)命題:若點(diǎn)在橢圓C的外部,則直線與橢圓C必相交.寫出這個(gè)命題的逆命題,判斷此逆命題的真假,說(shuō)明理由;

3)若在橢圓C的內(nèi)部,過(guò)N點(diǎn)任意作一條直線,交橢圓CAB,交M點(diǎn)(異于A、B),設(shè),問(wèn)是否為定值?說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案