(2012•寶雞模擬)(考生注意:請(qǐng)?jiān)谙铝腥}中任選一題作答,如果多做,則按所做的第一題評(píng)分)
A.(不等式選做題)若關(guān)于x的不等式|x+1|+|x-2|≤a有解,則實(shí)數(shù)a的取值范圍是
[3,+∞)
[3,+∞)

B.(幾何證明選做題)如圖所示,圓O是△ABC的外接圓,過(guò)C點(diǎn)的切線交AB的延長(zhǎng)線于點(diǎn)D,CD=2
7
,AB=BC=3,則AC長(zhǎng)
3
7
2
3
7
2

C.(坐標(biāo)系與參數(shù)方程選做題)極坐標(biāo)系下,直線ρcos(θ-
π
4
)=
2
與圓ρ=
2
的公共點(diǎn)個(gè)數(shù)是
1
1
分析:A. 由已知條件利用絕對(duì)值不等式的性質(zhì)可得|x+1|+|x-2|≥3,結(jié)合題意可得a≥3.
B.結(jié)合線割線定理,我們可以求出DB的長(zhǎng),再由△DBC∽△DCA根據(jù)相似三角形的性質(zhì)可以求出AC的長(zhǎng).
C.把極坐標(biāo)方程化為直角坐標(biāo)方程,求出圓心到直線的距離,將此距離和圓的半徑作對(duì)比,得出結(jié)論.
解答:解:A.∵|x+1|+|x-2|≥|(x+1)-(x-2)|=3,即|x+1|+|x-2|≥3,
由關(guān)于x的不等式|x+1|+|x-2|≤a有解,知a≥3,
故答案為[3,+∞).
B.由切割線定理得:DB•DA=DC2,即DB(DB+BA)=DC2,∴DB2+3DB-28=0,得DB=4.
∵∠A=∠BCD,∴△DBC∽△DCA,∴
BC
CA
=
DB
BC
,解得AC=
BC•DC
BD
=
3
7
2

故答案為
3
7
2

C.直線ρcos(θ-
π
4
)=
2
 即
2
2
ρcosθ+
2
2
ρsinθ=
2
,化為直角坐標(biāo)方程為 x+y-2=0,
圓ρ=2 即 x2+y2=4,圓心到直線的距離等于
|0+0-2|
2
=
2
<2(半徑),
故直線和圓相交,故直線和圓有兩個(gè)交點(diǎn),
故答案為 2.
點(diǎn)評(píng):本題主要考查絕對(duì)值不等式、有關(guān)絕對(duì)值不等式恒成立的問(wèn)題.與圓有關(guān)的比例線段,相似三角形的性質(zhì).把極坐標(biāo)方程化為直角坐標(biāo)方程的方法,點(diǎn)到直線的距離公式的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶雞模擬)已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的部分圖象如下圖所示:則函數(shù)f(x)的解析式為
f(x)=
2
sin(
π
8
x+
π
4
f(x)=
2
sin(
π
8
x+
π
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶雞模擬)已知實(shí)數(shù)x,y滿足不等式組
y≤x
x+y≤2
y≥0
,則目標(biāo)函數(shù)z=x+3y的最大值為
4
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶雞模擬)若函數(shù)f(x)=
2x,(x<3)
2x-m,(x≥3)
,且f(f(2))>7,則實(shí)數(shù)m的取值范圍為
(-∞,1)
(-∞,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶雞模擬)設(shè)函數(shù)f(x)=sin(x+
π
6
)+2sin2
x
2

(1)求f(x)的最小正周期;
(2)記△ABC的內(nèi)角A,B,C的對(duì)邊分別為a,b,c,若f(A)=1,a=1,c=
3
,求b值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•寶雞模擬)已知等差數(shù)列{an}的前三項(xiàng)依次為a-1,a+1,2a+3,則此數(shù)列的通項(xiàng)公式an等于(  )

查看答案和解析>>

同步練習(xí)冊(cè)答案