精英家教網 > 高中數學 > 題目詳情

已知a、b∈R,設p:|a|+|b|>|a+b|,q:函數y=x2-x+1在(0,+∞)上是增函數,那么命題:p∨q、p∧q、p中的真命題是________.

 

【答案】

p

【解析】主要考查簡單的邏輯聯結詞的含義。

解:對于p,當a>0,b>0時,|a|+|b|=|a+b|,故p假,p為真;對于q,拋物線y=x2-x+1的對稱軸為x=,故q假,所以p∨q假,p∧q假.

這里p應理解成|a|+|b|>|a+b|不恒成立,而不是|a|+|b|≤|a+b|.

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知A,B是橢圓
x2
a2
+
y2
b2
=1(a>b>0)
和雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
的公共頂點.P是雙曲線上的動點,M是橢圓上的動點(P、M都異于A、B),且滿足
AP
+
BP
=λ(
AM
+
BM
)
,其中λ∈R,設直線AP、BP、AM、BM的斜率分別記為k1,k2,k3,k4,k1+k2=5,則k3+k4=
-5
-5

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•盧灣區(qū)一模)已知
a
、
b
是兩個不共線的非零向量.
(1)設
OA
=
a
,
OB
=t
b
(t∈R),
OC
=
1
3
(
a
+
b
)
,當A、B、C三點共線時,求t的值.
(2)如圖,若
a
=
OD
,
b
=
OE
,
a
b
夾角為120°,|
a
|=|
b
|=1,點P是以O為圓心的圓弧
DE
上一動點,設
OP
=x
OD
+y
OE
(x,y∈R),求x+y的最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知A、B分別是直線y=
3
3
x
y=-
3
3
x
上的兩個動點,線段AB的長為2
3
,P是AB的中點.
(1)求動點P的軌跡C的方程;
(2)過點Q(1,0)任意作直線l(與x軸不垂直),設l與(1)中軌跡C交于M、N,與y軸交于R點.若
RM
MQ
RN
NQ
,證明:λ+μ 為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

如圖,已知A、B為橢圓
x2
a2
+
y2
b2
=1(a>b>0)
和雙曲線
x2
a2
-
y2
b2
=1
的公共頂點,P、Q分別為雙曲線和橢圓上不同于A、B的動點,且
OP
OQ
(λ∈R,λ>1)
.設AP、BP、AQ、BQ的斜率分別為k1、k2、k3、k4
(1)求證:k1k2=
b2
a2
;
(2)求k1+k2+k3+k4的值;
(3)設F1、F2分別為雙曲線和橢圓的右焦點,若PF1∥QF2,求k12+k22+k32+k42的值.

查看答案和解析>>

同步練習冊答案