【題目】在△ABC中,內(nèi)角A、B、C所對(duì)的邊分別是a、b、c,已知A=60°,b=5,c=4.
(1)求a;
(2)求sinBsinC的值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓C: =1(a>b>0)經(jīng)過(guò)點(diǎn)( ,1),且離心率為 .
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M、N是橢圓C上的點(diǎn),直線OM與ON(O為坐標(biāo)原點(diǎn))的斜率之積為﹣ ,若動(dòng)點(diǎn)P滿足 ,試探究,是否存在兩個(gè)定點(diǎn)F1 , F2 , 使得|PF1|+|PF2|為定值?若存在,求F1 , F2的坐標(biāo),若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第31屆夏季奧林匹克運(yùn)動(dòng)會(huì)將于2016年8月5日﹣21日在巴西里約熱內(nèi)盧舉行.下表是近五屆奧運(yùn)會(huì)中國(guó)代表團(tuán)和俄羅斯代表團(tuán)獲得的金牌數(shù)的統(tǒng)計(jì)數(shù)據(jù)(單位:枚).
第30屆倫敦 | 第29屆北京 | 第28屆雅典 | 第27屆悉尼 | 第26屆亞特蘭大 | |
中國(guó) | 38 | 51 | 32 | 28 | 16 |
俄羅斯 | 24 | 23 | 27 | 32 | 26 |
(Ⅰ)根據(jù)表格中兩組數(shù)據(jù)完成近五屆奧運(yùn)會(huì)兩國(guó)代表團(tuán)獲得的金牌數(shù)的莖葉圖,并通過(guò)莖葉圖比較兩國(guó)代表團(tuán)獲得的金牌數(shù)的平均值及分散程度(不要求計(jì)算出具體數(shù)值,給出結(jié)論即可);
(Ⅱ)甲、乙、丙三人競(jìng)猜今年中國(guó)代表團(tuán)和俄羅斯代表團(tuán)中的哪一個(gè)獲得的金牌數(shù)多(假設(shè)兩國(guó)代表團(tuán)獲得的金牌數(shù)不會(huì)相等),規(guī)定甲、乙、丙必須在兩個(gè)代表團(tuán)中選一個(gè),已知甲、乙猜中國(guó)代表團(tuán)的概率都為 ,丙猜中國(guó)代表團(tuán)的概率為 ,三人各自猜哪個(gè)代表團(tuán)的結(jié)果互不影響.現(xiàn)讓甲、乙、丙各猜一次,設(shè)三人中猜中國(guó)代表團(tuán)的人數(shù)為X,求X的分布列及數(shù)學(xué)期望EX.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4-5:不等式選講]
已知函數(shù)f(x)=|2x﹣a|+a.
(1)當(dāng)a=3時(shí),求不等式f(x)≤6的解集;
(2)設(shè)函數(shù)g(x)=|2x﹣3|,x∈R,f(x)+g(x)≥5,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知橢圓 + =1(a>b>0)的上頂點(diǎn)為A,左右頂點(diǎn)為B,C,右焦點(diǎn)為F,|AF|=3,且△ABC的周長(zhǎng)為14.
(1)求橢圓的離心率;
(2)過(guò)點(diǎn)M(4,0)的直線l與橢圓相交于不同兩點(diǎn)P,Q,點(diǎn)N在線段PQ上,設(shè)λ= = ,試判斷點(diǎn)N是否在一條定直線上,并求實(shí)數(shù)λ的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=alnx+x2﹣x,其中a∈R.
(Ⅰ)若a>0,討論f(x)的單調(diào)性;
(Ⅱ)當(dāng)x≥1時(shí),f(x)≥0恒成立,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù) ,
(1)若 ,求函數(shù) 處的切線方程
(2)設(shè)函數(shù) ,求 的單調(diào)區(qū)間.
(3)若存在 ,使得 成立,求 的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(1)求證:平面PBD⊥平面PAC;
(2)求二面角D﹣PB﹣C的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{an}的前n項(xiàng)和 ,且a1 , a4是等比數(shù)列{bn}的前兩項(xiàng),記bn與bn+1之間包含的數(shù)列{an}的項(xiàng)數(shù)為cn , 如b1與b2之間包含{an}中的項(xiàng)為a2 , a3 , 則c1=2.
(1)求數(shù)列{an}和{bn}的通項(xiàng)公式;
(2)求數(shù)列{ancn}的前n項(xiàng)和.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com