【題目】(江蘇省南京師大附中2018屆高三高考考前模擬考試數(shù)學(xué)試題)已知函數(shù)f(x)=lnx-ax+a,a∈R.
(1)若a=1,求函數(shù)f(x)的極值;
(2)若函數(shù)f(x)有兩個零點(diǎn),求a的范圍;
(3)對于曲線y=f(x)上的兩個不同的點(diǎn)P(x1,f(x1)),Q(x2,f(x2)),記直線PQ的斜率為k,若y=f(x)的導(dǎo)函數(shù)為f ′(x),證明:f ′()<k.
【答案】(1)見解析(2)(3)見解析
【解析】分析:(1)求極值可先求導(dǎo)分析函數(shù)的單調(diào)區(qū)間從而確定極值點(diǎn)求極值;(2)由(1)可知當(dāng)a≤0時,f(x)在(0,+∞)上單調(diào)增,不可能有兩個零點(diǎn);故只需討論當(dāng)a>0時的零點(diǎn)情況,當(dāng)a>0時,函數(shù)有極大值, 令(x>0),求導(dǎo)分析單調(diào)性結(jié)合零點(diǎn)定理進(jìn)行證明即可;(3)由斜率計(jì)算公式得 ,而 ,將看成一個整體構(gòu)造函數(shù)(),分析其最大值即可.
解:(1),,
當(dāng)時,,在上單調(diào)遞增,無極值;
當(dāng)時, ,在上單調(diào)遞增;
,在上單調(diào)遞減,
函數(shù)有極大值,無極小值.
(2)由(span>1)可知當(dāng)a≤0時,f(x)在(0,+∞)上單調(diào)增,不可能有兩個零點(diǎn);
當(dāng)a>0時,函數(shù)有極大值,
令(x>0), ,
,,在(0,1)上單調(diào)遞減;
,,在(1,+∞)上單調(diào)遞增,
函數(shù)有最小值.
要使若函數(shù)有兩個零點(diǎn)時,必須滿足,
下面證明時,函數(shù)有兩個零點(diǎn).
因?yàn)?/span>,
所以下面證明還有另一個零點(diǎn).
①當(dāng)時,,
,
令(),,
在上單調(diào)遞減,,則,
所以在上有零點(diǎn),又在上單調(diào)遞減,
所以在上有惟一零點(diǎn),從而有兩個零點(diǎn).
②當(dāng)時,,
,
易證,可得,
所以在上有零點(diǎn),又在上單調(diào)遞減,
所以在上有惟一零點(diǎn),從而有兩個零點(diǎn).
綜上,的范圍是.
(3)證明:,
,
又,,
不妨設(shè)0<x2<x1, t=,則t>1,
則.
令(),
則,
因此h(t)在(1,+∞)上單調(diào)遞減,所以h(t)<h(1)=0.
又0<x2<x1,所以x1-x2>0,
所以f ′()-k<0,即f ′()<k.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某連鎖經(jīng)營公司所屬5個零售店某月的銷售額和利潤額資料如下表:
商店名稱 | |||||
銷售額/千萬元 | 3 | 5 | 6 | 7 | 9 |
利潤額/百萬元 | 2 | 3 | 3 | 4 | 5 |
(1)畫出銷售額和利潤額的散點(diǎn)圖;
(2)若銷售額和利潤額具有相關(guān)關(guān)系,用最小二乘法計(jì)算利潤額對銷售額的回歸直線方程;
(3)據(jù)(2)的結(jié)果估計(jì)當(dāng)銷售額為4千萬元時的利潤額.
(附:線性回歸方程:,,,)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某輿情機(jī)構(gòu)為了解人們對某事件的關(guān)注度,隨機(jī)抽取了人進(jìn)行調(diào)查,其中女性中對該事件關(guān)注的占,而男性有人表示對該事件沒有關(guān)注.
關(guān)注 | 沒關(guān)注 | 合計(jì) | |
男 | |||
女 | |||
合計(jì) |
(1)根據(jù)以上數(shù)據(jù)補(bǔ)全列聯(lián)表;
(2)能否有的把握認(rèn)為“對事件是否關(guān)注與性別有關(guān)”?
(3)已知在被調(diào)查的女性中有名大學(xué)生,這其中有名對此事關(guān)注.現(xiàn)在從這名女大學(xué)生中隨機(jī)抽取人,求至少有人對此事關(guān)注的概率.
附表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,摩天輪的半徑為,點(diǎn)距地面的高度為,摩天輪按逆時針方向作勻速運(yùn)動,且每轉(zhuǎn)一圈,摩天輪上點(diǎn)的起始位置在最高點(diǎn).
(1)試確定點(diǎn)距離地面的高度(單位:)關(guān)于旋轉(zhuǎn)時間(單位:)的函數(shù)關(guān)系式;
(2)在摩天輪轉(zhuǎn)動一圈內(nèi),有多長時間點(diǎn)距離地面超過?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)當(dāng)時,求滿足的的取值:
(2)若函數(shù)是定義在上的奇函數(shù)
①存在,不等式有解,求的取值范圍;
②若函數(shù)滿足,若對任意,不等式恒成立,求實(shí)數(shù)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】己知 ,,且函數(shù)的圖像上的任意兩條對稱軸之間的距離的最小值是.
(1)求的值:
(2)將函數(shù)的圖像向右平移單位后,得到函數(shù)的圖像,求函數(shù)在上的最值,并求取得最值時的的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系.己知
點(diǎn)的極坐標(biāo)為,曲線的極坐標(biāo)方程為,曲線的參數(shù)方程為, (為參數(shù)).曲線和曲線相交于兩點(diǎn).
(1)求點(diǎn)的直角坐標(biāo);
(2)求曲線的直角坐標(biāo)方程和曲線的普通方程;
(3)求的面枳,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
(1)若在區(qū)間上是單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(2)若在處有極值10,求的值;
(3)若對任意的,有恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a>0,b>0,函數(shù)f(x)=|x+a|+|2x﹣b|的最小值為1.
(1)求證:2a+b=2;
(2)若a+2b≥tab恒成立,求實(shí)數(shù)t的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com