在平面直角坐標(biāo)系xOy中,O是坐標(biāo)原點(diǎn),設(shè)函數(shù)f(x)=k(x-2)+3的圖象為直線l,且l與x軸、y軸分別交于A、B兩點(diǎn),給出下列四個(gè)命題:
①存在正實(shí)數(shù)m,使△AOB的面積為m的直線l僅有一條;
②存在正實(shí)數(shù)m,使△AOB的面積為m的直線l僅有兩條;
③存在正實(shí)數(shù)m,使△AOB的面積為m的直線l僅有三條;
④存在正實(shí)數(shù)m,使△AOB的面積為m的直線l僅有四條.
其中所有真命題的序號(hào)是


  1. A.
    ①②③
  2. B.
    ③④
  3. C.
    ②④
  4. D.
    ②③④
D
分析:根據(jù)直線方程求出直線在兩坐標(biāo)軸上的截距,再構(gòu)造以斜率k為自變量,S是變量k的函數(shù),利用均值不等式求函數(shù)最小值方法,分k>0和k<0兩種情況討論存在直線的條件,再分析求解.
解答:∵直線y=k(x-2)+3與x軸,y軸交點(diǎn)的坐標(biāo)分別是,A(2-,0),B(0,3-2k).
S=×|2-|×|3-2k|=×
當(dāng)k>0時(shí),S=×=×(4k+-12),
∵4k+≥2=12,當(dāng)且僅當(dāng)k=時(shí)取等號(hào).
∴當(dāng)S=m>0時(shí),在k>0時(shí),k有兩值;
當(dāng)k<0時(shí),S=×=×=×[(-4k+)+12],
∵-4k+≥2=12.當(dāng)且僅當(dāng)k=-時(shí)取等號(hào).
當(dāng)m>12時(shí),在k<0時(shí),k有兩值.;
∴當(dāng) m=0時(shí),僅有一條直線使△AOB的面積為m,∴①不正確;
當(dāng)0<m<12時(shí),僅有兩條直線使△AOB的面積為m,∴②正確;
當(dāng)m=12時(shí),僅有三條直線使△AOB的面積為m,∴③正確;
當(dāng)m>12時(shí),僅有四條直線使△AOB的面積為m,∴④正確.
故選D
點(diǎn)評:本題借助考查命題的真假判定,考查直線與坐標(biāo)軸圍成的△的面積問題.S的面積可根據(jù)直線在坐標(biāo)軸上的截距求得.在本題中根據(jù)斜率k取值的個(gè)數(shù)來確定直線存在的條數(shù),這是解決此類題的常用方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,雙曲線中心在原點(diǎn),焦點(diǎn)在y軸上,一條漸近線方程為x-2y=0,則它的離心率為( 。
A、
5
B、
5
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知直線l的參數(shù)方程為
x=2t-1 
y=4-2t .
(參數(shù)t∈R),以直角坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立相應(yīng)的極坐標(biāo)系.在此極坐標(biāo)系中,若圓C的極坐標(biāo)方程為ρ=4cosθ,則圓心C到直線l的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(坐標(biāo)系與參數(shù)方程) 在平面直角坐標(biāo)系xOy中,圓C的參數(shù)方程為
x=2cosθ
y=2sinθ+2
 (參數(shù)θ∈[0,2π)),若以原點(diǎn)為極點(diǎn),射線ox為極軸建立極坐標(biāo)系,則圓C的圓心的極坐標(biāo)為
 
,圓C的極坐標(biāo)方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•廣東)在平面直角坐標(biāo)系xOy中,直線3x+4y-5=0與圓x2+y2=4相交于A、B兩點(diǎn),則弦AB的長等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,銳角α和鈍角β的終邊分別與單位圓交于A,B兩點(diǎn).
(Ⅰ)若點(diǎn)A的橫坐標(biāo)是
3
5
,點(diǎn)B的縱坐標(biāo)是
12
13
,求sin(α+β)的值;
(Ⅱ) 若|AB|=
3
2
,求
OA
OB
的值.

查看答案和解析>>

同步練習(xí)冊答案