【題目】x∈R,則f(x)與g(x)表示同一函數(shù)的是( )
A.f(x)=x2 ,
B.f(x)=1,g(x)=(x﹣1)0
C. ,
D. ,g(x)=x﹣3

【答案】C
【解析】解:f(x)=x2(x∈R),g(x)= =|x|(x∈R),兩函數(shù)對應關(guān)系不同,故A中兩函數(shù)不是同一函數(shù);

f(x)=1(x∈R),g(x)=(x﹣1)0=1(x≠1),兩函數(shù)的定義域不同,故B中的兩函數(shù)不是同一函數(shù);

f(x)= =1(x>0),g(x)= =1(x>0),兩函數(shù)的定義域相同,對應關(guān)系也相同,故C中的兩函數(shù)是同一函數(shù);

f(x)= =x﹣3(x≠﹣3),g(x)=x﹣3(x∈R),兩函數(shù)的定義域不同,故D中的兩函數(shù)不是同一函數(shù).

所以答案是:C.

【考點精析】解答此題的關(guān)鍵在于理解判斷兩個函數(shù)是否為同一函數(shù)的相關(guān)知識,掌握只有定義域和對應法則二者完全相同的函數(shù)才是同一函數(shù).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】下列各組函數(shù)是相等函數(shù)的為( )
A.
B.f(x)=(x﹣1)2 , g(x)=x﹣1
C.f(x)=x2+x+1,g(t)=t2+t+1
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=log2(1+x)+log2(1﹣x).
(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性,并加以說明;
(3)求f( )的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,其中a為常數(shù).
(1)若a=1,判斷函數(shù)f(x)的奇偶性;
(2)若函數(shù) 在其定義域上是奇函數(shù),求實數(shù)a的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓M的方程為x2+(y﹣2)2=1,直線l的方程為x﹣2y=0,點P在直線l上,過P點作圓M的切線PA,PB,切點為A,B.
(1)若∠APB=60°,試求點P的坐標;
(2)若P點的坐標為(2,1),過P作直線與圓M交于C,D兩點,當 時,求直線CD的方程;
(3)求證:經(jīng)過A,P,M三點的圓必過定點,并求出所有定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=x5 +bx﹣8,且f(﹣2)=10,則f(2)=( )
A.﹣26
B.﹣18
C.﹣10
D.10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=loga(3﹣ax).
(1)當 時,函數(shù)f(x)恒有意義,求實數(shù)a的取值范圍;
(2)是否存在這樣的實數(shù)a,使得函數(shù)f(x)在區(qū)間[2,3]上為增函數(shù),并且f(x)的最大值為1.如果存在,試求出a的值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,已知2ccosA+a=2b.
(1)求角C的值;
(2)若a+b=4,當c取最小值時,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=ax(a>0,a≠1)在區(qū)間[﹣1,1]上的最大值與最小值的差是1,則實數(shù)a的值為

查看答案和解析>>

同步練習冊答案