【題目】已知集合 ,
(1)若 ,求 的取值范圍;
(2)若 ,求 的取值范圍.
【答案】
(1)解: ,
, ,解得
(2)解: , 或 ,
解得 或
【解析】(1) 根據題意首先里一元二次不等式的解法取出集合A、B,再由子集的性質借助數軸得到關于a的不等式組,解出a的取值范圍即可。(2)利用交集的性質結合題意,利用數軸即可求出a的取值范圍。
【考點精析】根據題目的已知條件,利用子集與真子集和集合的交集運算的相關知識可以得到問題的答案,需要掌握任何一個集合是它本身的子集;n個元素的子集有2n個,n個元素的真子集有2n -1個,n個元素的非空真子集有2n-2個;交集的性質:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,則AB,反之也成立.
科目:高中數學 來源: 題型:
【題目】在直角坐標平面內,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,曲線C的極坐標方程是ρ=4sinθ,直線l的參數方程是 (t為參數).
(1)求直線l的普通方程和曲線C的直角坐標方程;
(2)求曲線C上的點到直線l的距離的最大值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】隨著智能手機的發(fā)展,微信越來越成為人們交流的一種方式.某機構對使用微信交流的態(tài)度進行調查,隨機調查了 50 人,他們年齡的頻數分布及對使用微信交流贊成人數如表.
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數 | 5 | 10 | 15 | 10 | 5 | 5 |
贊成人數 | 5 | 10 | 12 | 7 | 2 | 1 |
(I)由以上統計數據填寫下面 2×2 列聯表,并判斷是否有99%的把握認為年齡45歲為分界點對使用微信交流的態(tài)度有差異;
年齡不低于45歲的人 | 年齡低于45歲的人 | 合計 | |
贊成 | |||
不贊成 | |||
合計 |
(Ⅱ)若對年齡在[55,65),[65,75)的被調查人中隨機抽取兩人進行追蹤調查,記選中的4人中贊成使用微信交流的人數為X,求隨機變量X的分布列和數學期望
參考公式:K2= ,其中n=a+b+c+d
參考數據:
P(K2≥k0) | 0.050 | 0.010 | 0.001 |
k0 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知函數y=f(x)的圖象與g(x)=logax(a>0,且a≠1)的圖象關于x軸對稱,且g(x)的圖象過點(9,2).
(1)求函數f(x)的解析式;
(2)若f(3x1)>f(x+5)成立,求x的取值范圍.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】在四棱錐P﹣ABCD中,底面ABCD是邊長為1的正方形,PA⊥平面ABCD,PA=AB,M,N分別為PB,AC的中點,
(1)求證:MN∥平面PAD;
(2)求點B到平面AMN的距離.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,F1、F2分別是雙曲線 ﹣ =1(a>0,b>0)的兩個焦點,以坐標原點O為圓心,|OF1|為半徑的圓與該雙曲線左支交于A、B兩點,若△F2AB是等邊三角形,則雙曲線的離心率為( )
A.
B.2
C. ﹣1
D.1+
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】四名同學根據各自的樣本數據研究變量x,y之間的相關關系,并求得回歸直線方程,分別得到以下四個結論:
①y與x負相關且 =2.347x-6.423;②y與x負相關且 =-3.476x+5.648;
③y與x正相關且 =5.437x+8.493;④y與x正相關且 =-4.326x-4.578.
其中一定不正確的結論的序號是( )
A.①②
B.②③
C.③④
D.①④
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com