【題目】某小學(xué)舉辦“父母養(yǎng)育我,我報父母恩”的活動,對六個年級(一年級到六年級的年級代碼分別為1,2…,6)的學(xué)生給父母洗腳的百分比y%進行了調(diào)查統(tǒng)計,繪制得到下面的散點圖.

(1)由散點圖看出,可用線性回歸模型擬合y與x的關(guān)系,請用相關(guān)系數(shù)加以說明;

(2)建立y關(guān)于x的回歸方程,并據(jù)此預(yù)計該校學(xué)生升入中學(xué)的第一年(年級代碼為7)給父母洗腳的百分比.

附注:參考數(shù)據(jù):

參考公式:相關(guān)系數(shù),若r>0.95,則y與x的線性相關(guān)程度相當(dāng)高,可用線性回歸模型擬合y與x的關(guān)系.回歸方程中斜率與截距的最小二乘估計公式分別為 ,

【答案】(1)詳見解析;(2)見解析.

【解析】

(1)計算,代入計算公式求值即可判斷的線性相關(guān)程度;(2)由公式計算帶入回歸直線求得進而求得回歸方程,將x=7代入直線,即可確定百分比

(1)因為

所以,

所以,

因為所以,

所以

由于的相關(guān)系數(shù)約為,說明的線性相關(guān)程度相當(dāng)高,從而可用線性回歸模型擬合的關(guān)系.

(2)

因為,所以

所以回歸方程為

,代入回歸方程可得

所以預(yù)計該校學(xué)生升入中學(xué)的第一年給父母洗腳的百分比為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列四個命題中真命題是  

A. 同垂直于一直線的兩條直線互相平行

B. 底面各邊相等,側(cè)面都是矩形的四棱柱是正四棱柱

C. 過空間任一點與兩條異面直線都垂直的直線有且只有一條

D. 過球面上任意兩點的大圓有且只有一個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,四棱錐的底面是邊長為1的正方形,側(cè)棱底面,且,是側(cè)棱上的動點.

(1)求四棱錐的體積;

(2)如果的中點,求證:平面

(3)不論點在側(cè)棱的任何位置,是否都有?證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線與圓錐曲線C相交于A,B兩點,與軸、軸分別交于D、E兩點,且滿足.

(1)已知直線的方程為,且A的橫坐標小于B的橫坐標,拋物線C的方程為,求的值;

(2)已知雙曲線,求點D的坐標.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),是兩條不同的直線,,,是三個不同的平面,給出下列四個命題:

①若,,則

②若,,則

③若,,則

④若,,則

其中正確命題的序號是(

A.①和②B.②和③C.③和④D.①和④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點P12,3)、P2-4,5)和A-1,2),則過點A且與點P1、P2距離相等的直線方程為______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

討論的單調(diào)性.

,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了對某課題進行研究,用分層抽樣方法從三所高校A,B,C的相關(guān)人員中,抽取若干人組成研究小組、有關(guān)數(shù)據(jù)見下表(單位:人)

I) 求x,y ;

II) 若從高校BC抽取的人中選2人作專題發(fā)言,求這二人都來自高校C的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知,,其中是自然對數(shù)的底數(shù),.

(1)當(dāng)時,證明:;

(2)是否存在實數(shù),使的最小值為3,如果存在,求出的值;如果不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案